Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,8 @@ To provide a distinction between Deep Learning and Machine Learning/Statistical
| ***2. Spot Deconvolution*** | [RTCD](https://github.com/dmcable/RCTD) | Robust decomposition of cell type mixtures in spatial tran- scriptomics | R | 2021 | D. M. Cable, E. Murray, L. S. Zou, A. Goeva, E. Z. Macosko, F. Chen, and R. A. Irizarry, “Robust decomposition of cell type mixtures in spatial transcriptomics,” Nature Biotechnology (2021), 10.1038/s41587-021-00830- w. | |
| ***2. Spot Deconvolution*** | [SpatialDWLS](https://github.com/RubD/Giotto) | SpatialDWLS: Accurate deconvolution of spatial transcriptomic data | Python (PyTorch) | 2021 | R. Dong and G.-C. Yuan, “Spatialdwls: accurate deconvolution of spatial transcriptomic data,” Genome Biology 22, 145 (2021). | |
| ***2. Spot Deconvolution*** | [Cell2Location](https://github.com/BayraktarLab/cell2location) | Cell2Location maps fine-grained cell types in spatial transcriptomics | Python | 2022 | V. Kleshchevnikov, A. Shmatko, E. Dann, A. Aivazidis, H. W. King, T. Li, R. Elmentaite, A. Lomakin, V. Kedlian, A. Gayoso, M. S. Jain, J. S. Park, L. Ramona, E. Tuck, A. Arutyunyan, R. Vento-Tormo, M. Ger- stung, L. James, O. Stegle, and O. A. Bayraktar, “Cell2location maps fine-grained cell types in spatial transcriptomics,” Nature Biotechnology (2022), 10.1038/s41587-021-01139-4. | |
| ***2. Spot Deconvolution*** | [CARD](https://github.com/YingMa0107/CARD) | Spatially informed cell-type deconvolution for spatial transcriptomic | R | 2022 | Y. Ma and X. Zhou, “Spatially informed cell-type deconvolution for spatial transcriptomics,” Nature Biotechnology 40, 1349–1359 (2022). | |
| ***2. Spot Deconvolution*** | [CARD](https://github.com/YingMa0107/CARD) | Spatially informed cell-type deconvolution for spatial transcriptomic | R | 2022 | Y. Ma and X. Zhou, "Spatially informed cell-type deconvolution for spatial transcriptomics," Nature Biotechnology 40, 1349–1359 (2022). | |
| ***2. Spot Deconvolution*** | [FlashDeconv](https://github.com/cafferychen777/flashdeconv) | High-performance deconvolution using randomized sketching with linear O(N) scaling | Python | 2025 | C. Yang et al., "FlashDeconv: Ultra-fast cell type deconvolution for high-resolution spatial transcriptomics," bioRxiv (2025). https://doi.org/10.64898/2025.12.22.696108 | Designed for Visium HD |
| |
| ***3. Spatially Variable Genes ID*** | [Trendsceek](https://github.com/edsgard/trendsceek) | Identification of spatial expression trends in single-cell gene expression data | R | 2018 | D. Edsgärd, P. Johnsson, and R. Sandberg, “Identification of spatial expression trends in single-cell gene expression data,” Nature Methods 15, 339–342 (2018). | |
| ***3. Spatially Variable Genes ID*** | [SpatialDE](https://github.com/Teichlab/SpatialDE) | SpatialDE: Identification of spatially variable genes | Python | 2018 | V. Svensson, S. A. Teichmann, and O. Stegle, “SpatialDE: Identification of spatially variable genes,” Nature Methods 15, 343–346 (2018). | |
Expand Down