╔══════════════════════════════════════════════════════════════════════════════╗ ║ ║ ║ ████████╗██╗███╗ ███╗ ██████╗ ████████╗██╗ ██╗██╗ ██╗ ║ ║ ╚══██╔══╝██║████╗ ████║██╔═══██╗╚══██╔══╝██║ ██║╚██╗ ██╔╝ ║ ║ ██║ ██║██╔████╔██║██║ ██║ ██║ ███████║ ╚████╔╝ ║ ║ ██║ ██║██║╚██╔╝██║██║ ██║ ██║ ██╔══██║ ╚██╔╝ ║ ║ ██║ ██║██║ ╚═╝ ██║╚██████╔╝ ██║ ██║ ██║ ██║ ║ ║ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ║ ║ ║ ║ Timothy Nduati · @timothynn ║ ║ ║ ╚══════════════════════════════════════════════════════════════════════════════╝
CS Grad • Azure Certified Data Scientist • Software Engineer → Data Engineer
Building the bridge between code and insights
From writing algorithms to architecting data flows. From debugging code to debugging insights.
I'm on a mission to transform how organizations leverage their data—combining software engineering rigor with data science intuition to build systems that don't just work, but scale.
Current Chapter: Transitioning from software engineering into data engineering, bringing battle-tested engineering practices to the data world.
skills = {
'ml_frameworks': ['scikit-learn', 'tensorflow', 'pytorch'],
'cloud_ml': ['Azure ML Studio', 'Azure Cognitive Services'],
'analysis': ['pandas', 'numpy', 'scipy'],
'visualization': ['matplotlib', 'seaborn', 'plotly'],
'bi_tools': ['Power BI', 'Tableau']
}Certified: Microsoft Azure Data Scientist Associate |
toolkit = {
'orchestration': ['Airflow', 'Azure Data Factory'],
'processing': ['Spark', 'Kafka', 'dbt'],
'storage': ['PostgreSQL', 'Azure SQL', 'Cosmos DB'],
'cloud': ['Azure', 'AWS', 'GCP'],
'streaming': ['Kafka', 'Azure Event Hubs']
}Learning: Modern data stack, real-time pipelines |
foundation = {
'languages': ['Python', 'Java', 'C++', 'JavaScript'],
'paradigms': ['OOP', 'Functional', 'Concurrent'],
'practices': ['TDD', 'CI/CD', 'Code Review'],
'tools': ['Git', 'Docker', 'Kubernetes']
}Philosophy: Clean code, scalable systems |
automation = {
'containers': ['Docker', 'Kubernetes'],
'cicd': ['GitHub Actions', 'Azure DevOps'],
'monitoring': ['Prometheus', 'Grafana'],
'iac': ['Terraform', 'ARM Templates']
}Focus: MLOps, DataOps, automation |
Code is temporary. Data systems are forever.
Good data engineering isn't just about moving data from A to B—it's about building resilient, self-healing systems that handle chaos gracefully. It's software engineering principles applied to the messiest resource we have: real-world data.
My Principles:
- 🎯 Quality over speed → But never sacrifice both
- 🔄 Automate everything → Including the automation
- 📊 Data tells stories → Make sure they're true
- 🧪 Test in production → Just kidding. Test before production.
- 🚀 Ship iteratively → Perfect is the enemy of shipped
- 🏗️ Building a real-time data pipeline for streaming analytics
- 📚 Deep diving into distributed systems and data modeling
- 🤖 Implementing MLOps practices for production ML systems
- 🌱 Contributing to open-source data tools
- 📝 Writing about lessons learned in data engineering
I'm always interested in discussing data architecture, ML systems, or how to make data pipelines that don't keep you up at night.
graph LR
A[Software Engineering] --> B[Data Science]
B --> C[Machine Learning]
C --> D[Data Engineering]
D --> E[Distributed Systems]
style A fill:#0D1117,stroke:#58A6FF,stroke-width:2px
style B fill:#0D1117,stroke:#58A6FF,stroke-width:2px
style C fill:#0D1117,stroke:#58A6FF,stroke-width:3px
style D fill:#0D1117,stroke:#F97316,stroke-width:3px
style E fill:#0D1117,stroke:#F97316,stroke-width:2px
Current Focus: Data Engineering & Distributed Systems
Next Up: Stream Processing & Real-time Analytics
| Project | Description | Tech Stack |
|---|---|---|
| 🐧 Palmer Penguins Clustering | ML clustering analysis on penguin species data | Python, Scikit-learn, Pandas |
| 🔄 Data Pipeline Framework | ETL framework for automated data ingestion | Python, Airflow, Azure |
| 📊 Real-time Analytics Dashboard | Live data visualization platform | Python, Kafka, Power BI |
More projects coming soon...
"The best time to start building data systems was yesterday. The second best time is now."


