Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
681 changes: 681 additions & 0 deletions examples/medlink_mimic3.ipynb
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Some quick thoughts that:

  • Can we move the medlink task into the pyhealth.tasks module too? I actually think it'd be really helpful also to further have detailed documentation surrounding the query/document identifiers. It'd be good to link it up with the original paper's task of mapping records to a master known patient record.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It would also be nice to have it in the docs/ as that'll actually be a pretty nice to have for anyone working on record linkage problems.

Large diffs are not rendered by default.

5 changes: 3 additions & 2 deletions examples/patient_linkage_mimic3_medlink.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from pyhealth.models.medlink import get_eval_dataloader
from pyhealth.models.medlink import get_train_dataloader
from pyhealth.models.medlink import tvt_split
from pyhealth.tasks import patient_linkage_mimic3_fn
from pyhealth.tasks import PatientLinkageMIMIC3Task
from pyhealth.trainer import Trainer, logger

"""
Expand All @@ -36,7 +36,8 @@
base_dataset.stat()

""" STEP 2: set task """
sample_dataset = base_dataset.set_task(patient_linkage_mimic3_fn)
task = PatientLinkageMIMIC3Task()
sample_dataset = base_dataset.set_task(task)
sample_dataset.stat()
corpus, queries, qrels, corpus_meta, queries_meta = convert_to_ir_format(
sample_dataset.samples
Expand Down
22 changes: 0 additions & 22 deletions examples/test_eICU_addition.py

This file was deleted.

1 change: 1 addition & 0 deletions pyhealth/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,3 +18,4 @@
formatter = logging.Formatter("%(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)

3 changes: 2 additions & 1 deletion pyhealth/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,4 +26,5 @@
from .transformer import Transformer, TransformerLayer
from .transformers_model import TransformersModel
from .vae import VAE
from .sdoh import SdohClassifier
from .sdoh import SdohClassifier
from .medlink import MedLink
118 changes: 116 additions & 2 deletions pyhealth/models/embedding.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,7 @@
from typing import Dict
from __future__ import annotations

from typing import Dict, Any, Optional, Union
import os

import torch
import torch.nn as nn
Expand All @@ -18,6 +21,94 @@
)
from .base_model import BaseModel


def _iter_text_vectors(
path: str,
embedding_dim: int,
wanted_tokens: set[str],
encoding: str = "utf-8",
) -> Dict[str, torch.Tensor]:
"""Loads word vectors from a text file (e.g., GloVe) for a subset of tokens.

Expected format: one token per line followed by embedding_dim floats.

This function reads the file line-by-line and only retains vectors for
tokens present in `wanted_tokens`.
"""

if not os.path.exists(path):
raise FileNotFoundError(f"pretrained embedding file not found: {path}")

vectors: Dict[str, torch.Tensor] = {}
with open(path, "r", encoding=encoding) as f:
for line in f:
line = line.strip()
if not line:
continue
parts = line.split()
# token + embedding_dim values
if len(parts) < embedding_dim + 1:
continue
token = parts[0]
if token not in wanted_tokens:
continue
try:
vec = torch.tensor(
[float(x) for x in parts[1 : embedding_dim + 1]],
dtype=torch.float,
)
except ValueError:
continue
vectors[token] = vec
return vectors


def init_embedding_with_pretrained(
embedding: nn.Embedding,
code_vocab: Dict[Any, int],
pretrained_path: str,
embedding_dim: int,
pad_token: str = "<pad>",
unk_token: str = "<unk>",
normalize: bool = False,
freeze: bool = False,
) -> int:
"""Initializes an nn.Embedding from a pretrained text-vector file.

Tokens not found in the pretrained file are left as the module's existing
random initialization.

Returns:
int: number of tokens successfully initialized from the file.
"""

# Build wanted token set (stringified)
vocab_tokens = {str(t) for t in code_vocab.keys()}
vectors = _iter_text_vectors(pretrained_path, embedding_dim, vocab_tokens)

loaded = 0
with torch.no_grad():
for tok, idx in code_vocab.items():
tok_s = str(tok)
if tok_s in vectors:
vec = vectors[tok_s]
if normalize:
vec = vec / (vec.norm(p=2) + 1e-12)
embedding.weight[idx].copy_(vec)
loaded += 1

# Ensure pad row is zero
if pad_token in code_vocab:
embedding.weight[code_vocab[pad_token]].zero_()
# If embedding has a padding_idx, keep it consistent
if embedding.padding_idx is not None:
embedding.weight[embedding.padding_idx].zero_()

if freeze:
embedding.weight.requires_grad_(False)

return loaded

class EmbeddingModel(BaseModel):
"""
EmbeddingModel is responsible for creating embedding layers for different types of input data.
Expand Down Expand Up @@ -46,7 +137,14 @@ class EmbeddingModel(BaseModel):
- MultiHotProcessor: nn.Linear over multi-hot vector
"""

def __init__(self, dataset: SampleDataset, embedding_dim: int = 128):
def __init__(
self,
dataset: SampleDataset,
embedding_dim: int = 128,
pretrained_emb_path: Optional[Union[str, Dict[str, str]]] = None,
freeze_pretrained: bool = False,
normalize_pretrained: bool = False,
):
super().__init__(dataset)
self.embedding_dim = embedding_dim
self.embedding_layers = nn.ModuleDict()
Expand Down Expand Up @@ -81,6 +179,22 @@ def __init__(self, dataset: SampleDataset, embedding_dim: int = 128):
padding_idx=0,
)

# Optional pretrained initialization (e.g., GloVe).
if pretrained_emb_path is not None:
if isinstance(pretrained_emb_path, str):
path = pretrained_emb_path
else:
path = pretrained_emb_path.get(field_name)
if path:
init_embedding_with_pretrained(
self.embedding_layers[field_name],
processor.code_vocab,
path,
embedding_dim=embedding_dim,
normalize=normalize_pretrained,
freeze=freeze_pretrained,
)

# Numeric features (including deep nested floats) -> nn.Linear over last dim
elif isinstance(
processor,
Expand Down
Loading