Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 57 additions & 6 deletions pymc_extras/inference/laplace_approx/laplace.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@


import logging
import re

from collections.abc import Callable
from functools import partial
Expand Down Expand Up @@ -51,6 +52,58 @@
_log = logging.getLogger(__name__)


def _reset_laplace_dim_idx(idata: az.InferenceData) -> az.InferenceData:
"""
Because `fit_laplace` adds the (temp_chain, temp_draw) dimensions,
any variables without explicitly assigned dimensions receive
automatically generated indices that are shifted by two during
InferenceData creation.

This helper function corrects that shift by subtracting 2 from the
automatically detected dimension indices of the form
`<varname>_dim_<idx>`, restoring them to the indices they would have
had if the (temp_chain, temp_draw) dimensions were not added.

Only affects auto-assigned dimensions in `idata.posterior`.
"""

pattern = re.compile(r"^(?P<base>.+)_dim_(?P<idx>\d+)$")

dim_renames = {}
var_renames = {}

for dim in idata.posterior.dims:
match = pattern.match(dim)
if match is None:
continue

base = match.group("base")
idx = int(match.group("idx"))

# Guard against invalid or unintended renames
if idx < 2:
raise ValueError(
f"Cannot reset Laplace dimension index for '{dim}': "
f"index {idx} would become negative."
)

new_dim = f"{base}_dim_{idx - 2}"

dim_renames[dim] = new_dim

# Only rename variables if they actually exist
if dim in idata.posterior.variables:
var_renames[dim] = new_dim

if dim_renames:
idata.posterior = idata.posterior.rename_dims(dim_renames)

if var_renames:
idata.posterior = idata.posterior.rename_vars(var_renames)

return idata


def get_conditional_gaussian_approximation(
x: TensorVariable,
Q: TensorVariable | ArrayLike,
Expand Down Expand Up @@ -224,12 +277,8 @@ def model_to_laplace_approx(
elif name in model.named_vars_to_dims:
dims = (*batch_dims, *model.named_vars_to_dims[name])
else:
dims = (*batch_dims, *[f"{name}_dim_{i}" for i in range(batched_rv.ndim - 2)])
initval = initial_point.get(name, None)
dim_shapes = initval.shape if initval is not None else batched_rv.type.shape[2:]
laplace_model.add_coords(
{name: np.arange(shape) for name, shape in zip(dims[2:], dim_shapes)}
)
n_dim = batched_rv.ndim - 2 # (temp_chain, temp_draw) are always first 2 dims
dims = (*batch_dims,) + (None,) * n_dim

pm.Deterministic(name, batched_rv, dims=dims)

Expand Down Expand Up @@ -468,4 +517,6 @@ def fit_laplace(
["laplace_approximation", "unpacked_variable_names"]
)

idata = _reset_laplace_dim_idx(idata)

return idata
38 changes: 38 additions & 0 deletions tests/inference/laplace_approx/test_laplace.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,6 +193,44 @@ def test_fit_laplace_ragged_coords(rng):
assert (idata["posterior"].beta.sel(feature=1).to_numpy() > 0).all()


def test_fit_laplace_no_data_or_deterministic_dims(rng):
coords = {"city": ["A", "B", "C"], "feature": [0, 1], "obs_idx": np.arange(100)}
with pm.Model(coords=coords) as ragged_dim_model:
X = pm.Data("X", np.ones((100, 2)))
beta = pm.Normal(
"beta", mu=[[-100.0, 100.0], [-100.0, 100.0], [-100.0, 100.0]], dims=["city", "feature"]
)
mu = pm.Deterministic("mu", (X[:, None, :] * beta[None]).sum(axis=-1))
sigma = pm.Normal("sigma", mu=1.5, sigma=0.5, dims=["city"])

obs = pm.Normal(
"obs",
mu=mu,
sigma=sigma,
observed=rng.normal(loc=3, scale=1.5, size=(100, 3)),
dims=["obs_idx", "city"],
)

idata = fit_laplace(
optimize_method="Newton-CG",
progressbar=False,
use_grad=True,
use_hessp=True,
)

# These should have been dropped when the laplace idata was created
assert "laplace_approximation" not in list(idata.posterior.data_vars.keys())
assert "unpacked_var_names" not in list(idata.posterior.coords.keys())

assert idata["posterior"].beta.shape[-2:] == (3, 2)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

shouldn't we test we get the expected sample dims as well?

assert idata["posterior"].sigma.shape[-1:] == (3,)

# Check that everything got unraveled correctly -- feature 0 should be strictly negative, feature 1
# strictly positive
assert (idata["posterior"].beta.sel(feature=0).to_numpy() < 0).all()
assert (idata["posterior"].beta.sel(feature=1).to_numpy() > 0).all()


def test_model_with_nonstandard_dimensionality(rng):
y_obs = np.concatenate(
[rng.normal(-1, 2, size=150), rng.normal(3, 1, size=350), rng.normal(5, 4, size=50)]
Expand Down
Loading