Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
99 changes: 99 additions & 0 deletions python/pyarrow/_compute_docstrings.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,3 +156,102 @@
>>> pc.min_max(arr4)
<pyarrow.StructScalar: [('min', 'x'), ('max', 'z')]>
"""

function_doc_additions["first"] = """
Examples
--------
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
>>> pc.first(arr1)
<pyarrow.Int64Scalar: 1>

Using ``skip_nulls`` to handle null values.

>>> arr2 = pa.array([None, 1.0, 2.0, 3.0])
>>> pc.first(arr2)
<pyarrow.DoubleScalar: 1.0>
>>> pc.first(arr2, skip_nulls=False)
<pyarrow.DoubleScalar: None>

Using ``ScalarAggregateOptions`` to control minimum number of non-null values.

>>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
>>> pc.first(arr3)
<pyarrow.DoubleScalar: 1.0>
>>> pc.first(arr3, options=pc.ScalarAggregateOptions(min_count=3))
<pyarrow.DoubleScalar: 1.0>
>>> pc.first(arr3, options=pc.ScalarAggregateOptions(min_count=4))
<pyarrow.DoubleScalar: None>

See Also
--------
pyarrow.compute.first_last
pyarrow.compute.last
"""

function_doc_additions["last"] = """
Examples
--------
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
>>> pc.last(arr1)
<pyarrow.Int64Scalar: 2>

Using ``skip_nulls`` to handle null values.

>>> arr2 = pa.array([1.0, 2.0, 3.0, None])
>>> pc.last(arr2)
<pyarrow.DoubleScalar: 3.0>
>>> pc.last(arr2, skip_nulls=False)
<pyarrow.DoubleScalar: None>

Using ``ScalarAggregateOptions`` to control minimum number of non-null values.

>>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
>>> pc.last(arr3)
<pyarrow.DoubleScalar: 3.0>
>>> pc.last(arr3, options=pc.ScalarAggregateOptions(min_count=3))
<pyarrow.DoubleScalar: 3.0>
>>> pc.last(arr3, options=pc.ScalarAggregateOptions(min_count=4))
<pyarrow.DoubleScalar: None>

See Also
--------
pyarrow.compute.first
pyarrow.compute.first_last
"""

function_doc_additions["first_last"] = """
Examples
--------
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
>>> pc.first_last(arr1)
<pyarrow.StructScalar: [('first', 1), ('last', 2)]>

Using ``skip_nulls`` to handle null values.

>>> arr2 = pa.array([1.0, 2.0, 3.0, None])
>>> pc.first_last(arr2)
<pyarrow.StructScalar: [('first', 1.0), ('last', 3.0)]>
>>> pc.first_last(arr2, skip_nulls=False)
<pyarrow.StructScalar: [('first', 1.0), ('last', None)]>

Using ``ScalarAggregateOptions`` to control minimum number of non-null values.

>>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
>>> pc.first_last(arr3)
<pyarrow.StructScalar: [('first', 1.0), ('last', 3.0)]>
>>> pc.first_last(arr3, options=pc.ScalarAggregateOptions(min_count=3))
<pyarrow.StructScalar: [('first', 1.0), ('last', 3.0)]>
>>> pc.first_last(arr3, options=pc.ScalarAggregateOptions(min_count=4))
<pyarrow.StructScalar: [('first', None), ('last', None)]>

See Also
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

--------
pyarrow.compute.first
pyarrow.compute.last
"""
Loading