Conversation
hw02kaggle best private score: 0.76713 ● (1%) Simple baseline: 0.45797 (sample code) 默认值: hidden_layers = 1 [005/005] Train Acc: 0.460776 Loss: 1.876422 | Val Acc: 0.457841 loss: 1.889746 实验二: [004/005] Train Acc: 0.494620 Loss: 1.715949 | Val Acc: 0.473995 loss: 1.807472 实验三: [005/005] Train Acc: 0.486311 Loss: 1.749964 | Val Acc: 0.471650 loss: 1.814920 实验四: [003/005] Train Acc: 0.489009 Loss: 1.736357 | Val Acc: 0.470320 loss: 1.820758 结论:新增层数会提高准确率 实验五: [022/030] Train Acc: 0.502249 Loss: 1.686878 | Val Acc: 0.472946 loss: 1.809189 结论:num_epoch可能会继续收敛,但是不用太高收敛还挺快,可以先确定其他参数后面再增大训练次数 实验六: [009/010] Train Acc: 0.763975 Loss: 0.731162 | Val Acc: 0.684132 loss: 1.046159 结论:新增concat_nframes会提高准确率 实验七: [010/010] Train Acc: 0.690315 Loss: 0.986674 | Val Acc: 0.702654 loss: 0.946877 实验八: [010/010] Train Acc: 0.620712 Loss: 1.259031 | Val Acc: 0.666424 loss: 1.080704 估计增大训练次数也可以继续收敛 结论:新增dropout会提高准确率,而且作用很明显(随机屏蔽神经元),够防止过拟合。但是不是越大越好 实验九: [010/010] Train Acc: 0.702750 Loss: 0.925790 | Val Acc: 0.715762 loss: 0.889721 结论:新增batchnorm会提高准确率 实验十: [096/100] Train Acc: 0.767724 Loss: 0.708376 | Val Acc: 0.765344 loss: 0.743654 |
hw03Simple : 0.50099
Medium : 0.73207 Training Augmentation + Train Longer 实验1: 实验2: [ Train | 020/020 ] loss = 1.26153, acc = 0.56024 结论:添加图片变形收敛速度变慢了,而且反而出现了过拟合 实验3: [ Valid | 019/020 ] loss = 1.43384, acc = 0.52173 -> best 结论:合适的图片变形会增加识别率 实验4: train_tfm = tf.Compose([ 结论:这种大参数模型收敛更慢了 实验5: 重新设计了输出层,新增了dropout n_epochs = 20重新跑一次 [ Valid | 001/020 ] loss = 0.72903, acc = 0.76770 -> best 结论:好像需要改动测试集才行,现在可以看出来预训练还是很厉害的 实验6: [ Valid | 032/080 ] loss = 2.28870, acc = 0.19313 收敛太慢了 实验7: 比上面的好一些了,但是还是收敛很慢 实验8: 5:30分钟一个epoch [ Train | 001/010 ] loss = 2.31989, acc = 0.14399 结论:收敛稍微快了一些,但是5分钟还是慢了。 实验9: [ Train | 001/3000 ] loss = 2.31403, acc = 0.14575 |

hw01
修改了seed
选取了相关度最高的参数
改了入参个数
改了隐藏层神经元个数
换了一个优化器方法
修改了学习率