Skip to content

Official codes of CVPR 2023 Paper | Propagate And Calibrate: Real-time Passive Non-line-of-sight Tracking

Notifications You must be signed in to change notification settings

AgainstEntropy/NLOS-Track

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NLOS Tracking

Project Website arXiv Dataset Download

Official codes of CVPR 2023 Paper | Propagate And Calibrate: Real-time Passive Non-line-of-sight Tracking

Prepreation

Environment

Create a new environment and install dependencies with requirement.txt:

conda create -n NLOS_Tracking

conda activate NLOS_Tracking

conda install --file requirements.txt

Data

The NLOS-Track dataset can be downloaded from kaggle.

The file structure in project root should be as follow:

project_root
|   README.md
|   requirements.txt
|   train.py
+---data
+---utils
+---configs
|   ...
+---dataset
    +---render
    |   +---0000
    |   |      configs.yaml
    |   |      route.mat
    |   |      video_128.npy
    |   |      001.png
    |   |      002.png
    |   |      ...
    |   +---0001
    |       ...
    +---real-shot
        +---0000
        |      route.mat
        |      video_128.npy
        +---0001
            ...

Data Loading and Visualization

Follow the code blocks in data_playground.ipynb to load and visualize the dataset.

Usage

Train

Before training, fill the missing items in configuration files.

Create a new configuration file in ./configs for training:

python train.py --cfg_file=new_cfg --model_name=PAC_Net

or directly use default.yaml by default:

python train.py --model_name=PAC_Net --pretrained -b 64 -lr_b 2.5e-4 --gpu_ids=0,1 --port=8888

Test

Follow the code blocks in test.ipynb to test a trained model.

Citation

@article{wang2023nlosTrack,
  author   = {Wang, Yihao and Wang, Zhigang and Zhao, Bin and Wang, Dong and Chen, Mulin and Li, Xuelong},
  title    = {Propagate And Calibrate: Real-time Passive Non-line-of-sight Tracking},
  journal  = {CVPR},
  year     = {2023},
}

About

Official codes of CVPR 2023 Paper | Propagate And Calibrate: Real-time Passive Non-line-of-sight Tracking

Topics

Resources

Stars

Watchers

Forks

Contributors 2

  •  
  •