You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
base.cmul,"var z1 = new Complex128( 5.0, 3.0 )\nvar z2 = new Complex128( -2.0, 1.0 )\nvar out = base.cmul( z1, z2 )\nvar re = real( out )\nvar im = imag( out )\n"
@@ -278,7 +278,7 @@ base.coversin,"var y = base.coversin( 3.14 )\ny = base.coversin( -4.2 )\ny = bas
278
278
base.cphase,"var phi = base.cphase( new Complex128( 5.0, 3.0 ) )\n"
279
279
base.cpolar,"var out = base.cpolar( new Complex128( 5.0, 3.0 ) )\n"
280
280
base.cpolar.assign,"var out = new Float64Array( 2 );\nvar v = base.cpolar.assign( new Complex128( 5.0, 3.0 ), out, 1, 0 )\nvar bool = ( v === out )\n"
281
-
base.cround,"var v = base.cround( new Complex128( 5.5, 3.3 ) )\nvar re = real( v )\nvar im = imag( v )\n"
281
+
base.cround,"var v = base.cround( new Complex128( 5.5, 3.3 ) )\n"
282
282
base.croundn,"var v = base.croundn( new Complex128( 5.555, -3.336 ), -2 )\n"
283
283
base.csc,"var y = base.csc( 0.0 )\ny = base.csc( PI/2.0 )\ny = base.csc( -PI/6.0 )\ny = base.csc( NaN )\n"
284
284
base.cscd,"var y = base.cscd( 1.0 )\ny = base.cscd( PI )\ny = base.cscd( -PI )\ny = base.cscd( NaN )\n"
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/repl/help/data/data.csv
+3-3Lines changed: 3 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -248,8 +248,8 @@ base.cfloor,"\nbase.cfloor( z )\n Rounds a double-precision complex floating-
248
248
base.cfloorn,"\nbase.cfloorn( z, n )\n Rounds each component of a double-precision complex floating-point number\n to the nearest multiple of `10^n` toward negative infinity.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n n: integer\n Integer power of 10.\n\n Returns\n -------\n z: Complex128\n Result.\n\n Examples\n --------\n > var v = base.cfloorn( new Complex128( 5.555, -3.333 ), -2 )\n <Complex128>\n > var re = real( v )\n 5.55\n > var im = imag( v )\n -3.34\n\n See Also\n --------\n base.cceiln, base.cfloor, base.croundn\n"
249
249
base.cidentity,"\nbase.cidentity( z )\n Evaluates the identity function for a double-precision complex floating-\n point number.\n\n Parameters\n ----------\n z: Complex128\n Input value.\n\n Returns\n -------\n v: Complex128\n Input value.\n\n Examples\n --------\n > var v = base.cidentity( new Complex128( -1.0, 2.0 ) )\n <Complex128>\n > var re = real( v )\n -1.0\n > var img = imag( v )\n 2.0\n\n See Also\n --------\n base.cidentityf, base.identity\n"
250
250
base.cidentityf,"\nbase.cidentityf( z )\n Evaluates the identity function for a single-precision complex floating-\n point number.\n\n Parameters\n ----------\n z: Complex64\n Input value.\n\n Returns\n -------\n v: Complex64\n Input value.\n\n Examples\n --------\n > var v = base.cidentityf( new Complex64( -1.0, 2.0 ) )\n <Complex64>\n > var re = realf( v )\n -1.0\n > var img = imagf( v )\n 2.0\n\n See Also\n --------\n base.cidentity, base.identityf\n"
251
-
base.cinv,"\nbase.cinv( z )\n Computes the inverse of a double-precision complex floating-point number.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n Returns\n -------\n out: Complex128\n Result.\n\n Examples\n --------\n > var v = base.cinv( new Complex128( 2.0, 4.0 ) )\n <Complex128>\n > var re = real( v )\n 0.1\n > var im = imag( v )\n -0.2\n\n See Also\n --------\n base.cdiv, base.cinvf\n"
252
-
base.cinvf,"\nbase.cinvf( z )\n Computes the inverse of a single-precision complex floating-point number.\n\n Parameters\n ----------\n z: Complex64\n Complex number.\n\n Returns\n -------\n out: Complex64\n Result.\n\n Examples\n --------\n > var v = base.cinvf( new Complex64( 2.0, 4.0 ) )\n <Complex64>\n > var re = realf( v )\n ~0.1\n > var im = imagf( v )\n ~-0.2\n\n See Also\n --------\n base.cinv\n"
251
+
base.cinv,"\nbase.cinv( z )\n Computes the inverse of a double-precision complex floating-point number.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n Returns\n -------\n out: Complex128\n Result.\n\n Examples\n --------\n > var v = base.cinv( new Complex128( 2.0, 4.0 ) )\n <Complex128>[ 0.1, -0.2 ]\n\n See Also\n --------\n base.cdiv, base.cinvf\n"
252
+
base.cinvf,"\nbase.cinvf( z )\n Computes the inverse of a single-precision complex floating-point number.\n\n Parameters\n ----------\n z: Complex64\n Complex number.\n\n Returns\n -------\n out: Complex64\n Result.\n\n Examples\n --------\n > var v = base.cinvf( new Complex64( 2.0, 4.0 ) )\n <Complex64>[ ~0.1, ~-0.2 ]\n\n See Also\n --------\n base.cinv\n"
253
253
base.clamp,"\nbase.clamp( v, min, max )\n Restricts a double-precision floating-point number to a specified range.\n\n If provided `NaN` for any argument, the function returns `NaN`.\n\n Parameters\n ----------\n v: number\n Value to restrict.\n\n min: number\n Minimum value.\n\n max: number\n Maximum value.\n\n Returns\n -------\n y: number\n Restricted value.\n\n Examples\n --------\n > var y = base.clamp( 3.14, 0.0, 5.0 )\n 3.14\n > y = base.clamp( -3.14, 0.0, 5.0 )\n 0.0\n > y = base.clamp( 3.14, 0.0, 3.0 )\n 3.0\n > y = base.clamp( -0.0, 0.0, 5.0 )\n 0.0\n > y = base.clamp( 0.0, -3.14, -0.0 )\n -0.0\n > y = base.clamp( NaN, 0.0, 5.0 )\n NaN\n\n See Also\n --------\n base.clampf, base.wrap\n"
254
254
base.clampf,"\nbase.clampf( v, min, max )\n Restricts a single-precision floating-point number to a specified range.\n\n If provided `NaN` for any argument, the function returns `NaN`.\n\n Parameters\n ----------\n v: number\n Value to restrict.\n\n min: number\n Minimum value.\n\n max: number\n Maximum value.\n\n Returns\n -------\n y: number\n Restricted value.\n\n Examples\n --------\n > var y = base.clampf( 3.14, 0.0, 5.0 )\n 3.14\n > y = base.clampf( -3.14, 0.0, 5.0 )\n 0.0\n > y = base.clampf( 3.14, 0.0, 3.0 )\n 3.0\n > y = base.clampf( -0.0, 0.0, 5.0 )\n 0.0\n > y = base.clampf( 0.0, -3.14, -0.0 )\n -0.0\n > y = base.clampf( NaN, 0.0, 5.0 )\n NaN\n\n See Also\n --------\n base.clamp\n"
255
255
base.cmul,"\nbase.cmul( z1, z2 )\n Multiplies two double-precision complex floating-point numbers.\n\n Parameters\n ----------\n z1: Complex128\n Complex number.\n\n z2: Complex128\n Complex number.\n\n Returns\n -------\n out: Complex128\n Result.\n\n Examples\n --------\n > var z1 = new Complex128( 5.0, 3.0 )\n <Complex128>\n > var z2 = new Complex128( -2.0, 1.0 )\n <Complex128>\n > var out = base.cmul( z1, z2 )\n <Complex128>\n > var re = real( out )\n -13.0\n > var im = imag( out )\n -1.0\n\n\nbase.cmul.assign( re1, im1, re2, im2, out, strideOut, offsetOut )\n Multiplies two double-precision complex floating-point numbers and assigns\n results to a provided output array.\n\n Parameters\n ----------\n re1: number\n Real component of the first complex number.\n\n im1: number\n Imaginary component of the first complex number.\n\n re2: number\n Real component of the second complex number.\n\n im2: number\n Imaginary component of the second complex number.\n\n out: ArrayLikeObject\n Output array.\n\n strideOut: integer\n Stride length.\n\n offsetOut: integer\n Starting index.\n\n Returns\n -------\n out: ArrayLikeObject\n Output array.\n\n Examples\n --------\n > var out = new Float64Array( 2 );\n > base.cmul.assign( 5.0, 3.0, -2.0, 1.0, out, 1, 0 )\n <Float64Array>[ -13.0, -1.0 ]\n\n\nbase.cmul.strided( z1, sz1, oz1, z2, sz2, oz2, out, so, oo )\n Multiplies two double-precision complex floating-point numbers stored in\n real-valued strided array views and assigns results to a provided strided\n output array.\n\n Parameters\n ----------\n z1: ArrayLikeObject\n First complex number view.\n\n sz1: integer\n Stride length for `z1`.\n\n oz1: integer\n Starting index for `z1`.\n\n z2: ArrayLikeObject\n Second complex number view.\n\n sz2: integer\n Stride length for `z2`.\n\n oz2: integer\n Starting index for `z2`.\n\n out: ArrayLikeObject\n Output array.\n\n so: integer\n Stride length for `out`.\n\n oo: integer\n Starting index for `out`.\n\n Returns\n -------\n out: ArrayLikeObject\n Output array.\n\n Examples\n --------\n > var z1 = new Float64Array( [ 5.0, 3.0 ] );\n > var z2 = new Float64Array( [ -2.0, 1.0 ] );\n > var out = new Float64Array( 2 );\n > base.cmul.strided( z1, 1, 0, z2, 1, 0, out, 1, 0 )\n <Float64Array>[ -13.0, -1.0 ]\n\n See Also\n --------\n base.cadd, base.cdiv, base.csub\n"
@@ -278,7 +278,7 @@ base.coversin,"\nbase.coversin( x )\n Computes the coversed sine.\n\n The
278
278
base.cphase,"\nbase.cphase( z )\n Computes the argument of a double-precision complex floating-point number\n in radians.\n\n The argument of a complex number, also known as the phase, is the angle of\n the radius extending from the origin to the complex number plotted in the\n complex plane and the positive real axis.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n Returns\n -------\n phi: number\n Argument.\n\n Examples\n --------\n > var phi = base.cphase( new Complex128( 5.0, 3.0 ) )\n ~0.5404\n\n See Also\n --------\n base.cabs\n"
279
279
base.cpolar,"\nbase.cpolar( z )\n Returns the absolute value and phase of a double-precision complex\n floating-point number.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n Returns\n -------\n out: Array<number>\n Absolute value and phase, respectively.\n\n Examples\n --------\n > var out = base.cpolar( new Complex128( 5.0, 3.0 ) )\n [ ~5.83, ~0.5404 ]\n\n\nbase.cpolar.assign( z, out, stride, offset )\n Returns the absolute value and phase of a double-precision complex\n floating-point number and assigns results to a provided output array.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n out: Array|TypedArray|Object\n Destination array.\n\n stride: integer\n Output array stride.\n\n offset: integer\n Output array index offset.\n\n Returns\n -------\n out: Array|TypedArray|Object\n Absolute value and phase, respectively.\n\n Examples\n --------\n > var out = new Float64Array( 2 );\n > var v = base.cpolar.assign( new Complex128( 5.0, 3.0 ), out, 1, 0 )\n <Float64Array>[ ~5.83, ~0.5404 ]\n > var bool = ( v === out )\n true\n\n See Also\n --------\n base.cabs, base.cphase"
280
280
base.cpolar.assign,"\nbase.cpolar.assign( z, out, stride, offset )\n Returns the absolute value and phase of a double-precision complex\n floating-point number and assigns results to a provided output array.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n out: Array|TypedArray|Object\n Destination array.\n\n stride: integer\n Output array stride.\n\n offset: integer\n Output array index offset.\n\n Returns\n -------\n out: Array|TypedArray|Object\n Absolute value and phase, respectively.\n\n Examples\n --------\n > var out = new Float64Array( 2 );\n > var v = base.cpolar.assign( new Complex128( 5.0, 3.0 ), out, 1, 0 )\n <Float64Array>[ ~5.83, ~0.5404 ]\n > var bool = ( v === out )\n true\n\n See Also\n --------\n base.cabs, base.cphase"
281
-
base.cround,"\nbase.cround( z )\n Rounds each component of a double-precision complex floating-point number\n to the nearest integer.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n Returns\n -------\n out: Complex128\n Rounded complex number.\n\n Examples\n --------\n > var v = base.cround( new Complex128( 5.5, 3.3 ) )\n <Complex128>\n > var re = real( v )\n 6.0\n > var im = imag( v )\n 3.0\n\n See Also\n --------\n base.cceil, base.cfloor, base.croundn\n"
281
+
base.cround,"\nbase.cround( z )\n Rounds each component of a double-precision complex floating-point number\n to the nearest integer.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n Returns\n -------\n out: Complex128\n Rounded complex number.\n\n Examples\n --------\n > var v = base.cround( new Complex128( 5.5, 3.3 ) )\n <Complex128>[ 6.0, 3.0 ]\n\n See Also\n --------\n base.cceil, base.cfloor, base.croundn\n"
282
282
base.croundn,"\nbase.croundn( z, n )\n Rounds each component of a double-precision complex floating-point number\n to the nearest multiple of `10^n`.\n\n When operating on floating-point numbers in bases other than `2`, rounding\n to specified digits can be inexact.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n n: integer\n Integer power of 10.\n\n Returns\n -------\n out: Complex128\n Result.\n\n Examples\n --------\n > var v = base.croundn( new Complex128( 5.555, -3.336 ), -2 )\n <Complex128>[ 5.56, -3.34 ]\n\n See Also\n --------\n base.cceiln, base.cfloorn, base.cround\n"
283
283
base.csc,"\nbase.csc( x )\n Computes the cosecant of a number.\n\n Parameters\n ----------\n x: number\n Input value (in radians).\n\n Returns\n -------\n y: number\n Cosecant.\n\n Examples\n --------\n > var y = base.csc( 0.0 )\n Infinity\n > y = base.csc( PI/2.0 )\n ~1.0\n > y = base.csc( -PI/6.0 )\n ~-2.0\n > y = base.csc( NaN )\n NaN\n\n See Also\n --------\n base.cot, base.sin"
284
284
base.cscd,"\nbase.cscd( x )\n Computes the cosecant of a degree.\n\n Parameters\n ----------\n x: number\n Input value (in degrees).\n\n Returns\n -------\n y: number\n Cosecant.\n\n Examples\n --------\n > var y = base.cscd( 1.0 )\n ~57.30\n > y = base.cscd( PI )\n ~18.25\n > y = base.cscd( -PI )\n ~-18.25\n > y = base.cscd( NaN )\n NaN\n\n See Also\n --------\n base.cotd, base.secd\n"
0 commit comments