diff --git a/apps/voice-memory-demo/README.md b/apps/voice-memory-demo/README.md index c5b8d24..cf34787 100644 --- a/apps/voice-memory-demo/README.md +++ b/apps/voice-memory-demo/README.md @@ -2,7 +2,7 @@ A Next.js demo showcasing persistent memory for voice AI agents using **Gemini Live** and **MongoDB**. -Based on the article: [Building Persistent Memory for Voice AI Agents with MongoDB](../article.md) +Based on the article: [Building Persistent Memory for Voice AI Agents with MongoDB](https://dev.to/mongodb/building-persistent-memory-for-voice-ai-agents-with-mongodb-1obe) ## Features @@ -51,7 +51,7 @@ Edit `.env.local` with your credentials: GOOGLE_API_KEY=your_gemini_api_key MONGODB_URI=mongodb+srv://... MONGODB_DB=voice_memory_demo -VOYAGE_AI_API_KEY=your_voyage_ai_key # Optional, for semantic search +VOYAGE_AI_API_KEY=your_voyage_ai_key ``` ### 3. Run the Development Server @@ -64,13 +64,13 @@ Open [http://localhost:3000](http://localhost:3000) in your browser. ### 4. Create MongoDB Indexes -For hybrid search (vector + text) with `$rankFusion`, you need to create two Atlas Search indexes on the `memories` collection: +For hybrid search (vector + text) with `$rankFusion` (require latest Atlas version cluster), the code creates on startup two Atlas Search indexes on the `memories` collection: #### Vector Search Index **Index Name:** `memory_vector_index` -In Atlas UI: **Search Indexes** → **Create Search Index** → **Atlas Vector Search** +Optional: In Atlas UI: **Search Indexes** → **Create Search Index** → **Atlas Vector Search** ```json { @@ -101,7 +101,7 @@ In Atlas UI: **Search Indexes** → **Create Search Index** → **Atlas Vector S **Index Name:** `memory_text_index` -In Atlas UI: **Search Indexes** → **Create Search Index** → **Atlas Search** +Optional: In Atlas UI: **Search Indexes** → **Create Search Index** → **Atlas Search** ```json {