@@ -12,6 +12,7 @@ _randint_type = {'bool': (0, 2),
1212ctypedef np.npy_bool bool_t
1313
1414cdef inline uint64_t _gen_mask(uint64_t max_val) nogil:
15+ """Mask generator for use in bounded random numbers"""
1516 # Smallest bit mask >= max
1617 cdef uint64_t mask = max_val
1718 mask |= mask >> 1
@@ -21,53 +22,23 @@ cdef inline uint64_t _gen_mask(uint64_t max_val) nogil:
2122 mask |= mask >> 16
2223 mask |= mask >> 32
2324 return mask
25+
26+
2427{{
2528py:
26- bc_ctypes = (('uint32', 'uint32', 'uint64', 'NPY_UINT64', 0, 0, 0, '0X100000000ULL'),
29+ type_info = (('uint32', 'uint32', 'uint64', 'NPY_UINT64', 0, 0, 0, '0X100000000ULL'),
2730 ('uint16', 'uint16', 'uint32', 'NPY_UINT32', 1, 16, 0, '0X10000UL'),
2831 ('uint8', 'uint8', 'uint16', 'NPY_UINT16', 3, 8, 0, '0X100UL'),
2932 ('bool','bool', 'uint8', 'NPY_UINT8', 31, 1, 0, '0x2UL'),
3033 ('int32', 'uint32', 'uint64', 'NPY_INT64', 0, 0, '-0x80000000LL', '0x80000000LL'),
3134 ('int16', 'uint16', 'uint32', 'NPY_INT32', 1, 16, '-0x8000LL', '0x8000LL' ),
3235 ('int8', 'uint8', 'uint16', 'NPY_INT16', 3, 8, '-0x80LL', '0x80LL' ),
3336)}}
34- {{for nptype, utype, nptype_up, npctype, remaining, bitshift, lb, ub in bc_ctypes }}
37+ {{for nptype, utype, nptype_up, npctype, remaining, bitshift, lb, ub in type_info }}
3538{{ py: otype = nptype + '_' if nptype == 'bool' else nptype }}
36- cdef object _rand_{{nptype}}(object low, object high, object size, aug_state *state, object lock):
37- """
38- _rand_{{nptype}}(low, high, size, *state, lock)
39-
40- Return random np.{{nptype}} integers between `low` and `high`, inclusive.
41-
42- Return random integers from the "discrete uniform" distribution in the
43- closed interval [`low`, `high`). If `high` is None (the default),
44- then results are from [0, `low`). On entry the arguments are presumed
45- to have been validated for size and order for the np.{{nptype}} type.
46-
47- Parameters
48- ----------
49- low : int or array-like
50- Lowest (signed) integer to be drawn from the distribution (unless
51- ``high=None``, in which case this parameter is the *highest* such
52- integer).
53- high : int or array-like
54- If provided, the largest (signed) integer to be drawn from the
55- distribution (see above for behavior if ``high=None``).
56- size : int or tuple of ints
57- Output shape. If the given shape is, e.g., ``(m, n, k)``, then
58- ``m * n * k`` samples are drawn. Default is None, in which case a
59- single value is returned.
60- state : augmented random state
61- State to use in the core random number generators
62- lock : threading.Lock
63- Lock to prevent multiple using a single RandomState simultaneously
6439
65- Returns
66- -------
67- out : python scalar or ndarray of np.{{nptype}}
68- `size`-shaped array of random integers from the appropriate
69- distribution, or a single such random int if `size` not provided.
70- """
40+ cdef object _rand_{{nptype}}_broadcast(np.ndarray low, np.ndarray high, object size, aug_state *state, object lock):
41+ """Array path for smaller integer types"""
7142 cdef {{utype}}_t rng, last_rng, off, val, mask, out_val
7243 cdef uint32_t buf
7344 cdef {{utype}}_t *out_data
@@ -77,40 +48,6 @@ cdef object _rand_{{nptype}}(object low, object high, object size, aug_state *st
7748 cdef np.broadcast it
7849 cdef int buf_rem = 0
7950
80- if size is not None:
81- if (np.prod(size) == 0):
82- return np.empty(size, dtype=np.{{nptype}})
83-
84- low = np.array(low, copy=False)
85- high = np.array(high, copy=False)
86- low_ndim = np.PyArray_NDIM(<np.ndarray>low)
87- high_ndim = np.PyArray_NDIM(<np.ndarray>high)
88- if ((low_ndim == 0 or (low_ndim==1 and low.size==1 and size is not None)) and
89- (high_ndim == 0 or (high_ndim==1 and high.size==1 and size is not None))):
90- low = int(low)
91- high = int(high)
92-
93- if low < {{lb}}:
94- raise ValueError("low is out of bounds for {{nptype}}")
95- if high > {{ub}}:
96- raise ValueError("high is out of bounds for {{nptype}}")
97- if low >= high:
98- raise ValueError("low >= high")
99-
100- high -= 1
101- rng = <{{utype}}_t>(high - low)
102- off = <{{utype}}_t>(<{{nptype}}_t>low)
103- if size is None:
104- with lock:
105- random_bounded_{{utype}}_fill(state, off, rng, 1, &out_val)
106- return np.{{otype}}(<{{nptype}}_t>out_val)
107- else:
108- out_arr = <np.ndarray>np.empty(size, np.{{nptype}})
109- cnt = np.PyArray_SIZE(out_arr)
110- out_data = <{{utype}}_t *>np.PyArray_DATA(out_arr)
111- with lock, nogil:
112- random_bounded_{{utype}}_fill(state, off, rng, cnt, out_data)
113- return out_arr
11451
11552 # Array path
11653 low_arr = <np.ndarray>low
@@ -149,16 +86,91 @@ cdef object _rand_{{nptype}}(object low, object high, object size, aug_state *st
14986 out_data[i] = random_buffered_bounded_{{utype}}(state, off, rng, mask, &buf_rem, &buf)
15087
15188 np.PyArray_MultiIter_NEXT(it)
152-
15389 return out_arr
15490{{endfor}}
91+
15592{{
15693py:
157- big_bc_ctypes = (('uint64', 'uint64', 'NPY_UINT64', '0x0ULL', '0xFFFFFFFFFFFFFFFFULL'),
94+ big_type_info = (('uint64', 'uint64', 'NPY_UINT64', '0x0ULL', '0xFFFFFFFFFFFFFFFFULL'),
15895 ('int64', 'uint64', 'NPY_INT64', '-0x8000000000000000LL', '0x7FFFFFFFFFFFFFFFLL' )
15996)}}
160- {{for nptype, utype, npctype, lb, ub in big_bc_ctypes }}
97+ {{for nptype, utype, npctype, lb, ub in big_type_info }}
16198{{ py: otype = nptype}}
99+ cdef object _rand_{{nptype}}_broadcast(object low, object high, object size, aug_state *state, object lock):
100+ """Array path for 64-bit integer types"""
101+ cdef np.ndarray low_arr, high_arr, out_arr, highm1_arr
102+ cdef np.npy_intp i, cnt
103+ cdef np.broadcast it
104+ cdef object closed_upper
105+ cdef uint64_t *out_data
106+ cdef {{nptype}}_t *highm1_data
107+ cdef {{nptype}}_t low_v, high_v
108+ cdef uint64_t rng, last_rng, val, mask, off, out_val
109+
110+ low_arr = <np.ndarray>low
111+ high_arr = <np.ndarray>high
112+
113+ if np.any(np.less(low_arr, {{lb}})):
114+ raise ValueError('low is out of bounds for {{nptype}}')
115+
116+ highm1_arr = <np.ndarray>np.empty_like(high_arr, dtype=np.{{nptype}})
117+ highm1_data = <{{nptype}}_t *>np.PyArray_DATA(highm1_arr)
118+ cnt = np.PyArray_SIZE(high_arr)
119+ flat = high_arr.flat
120+ for i in range(cnt):
121+ closed_upper = int(flat[i]) - 1
122+ if closed_upper > {{ub}}:
123+ raise ValueError('high is out of bounds for {{nptype}}')
124+ if closed_upper < {{lb}}:
125+ raise ValueError('low >= high')
126+ highm1_data[i] = <{{nptype}}_t>closed_upper
127+
128+ if np.any(np.greater(low_arr, highm1_arr)):
129+ raise ValueError('low >= high')
130+
131+ high_arr = highm1_arr
132+ low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.{{npctype}}, np.NPY_ALIGNED | np.NPY_FORCECAST)
133+
134+ if size is not None:
135+ out_arr = <np.ndarray>np.empty(size, np.{{nptype}})
136+ else:
137+ it = np.PyArray_MultiIterNew2(low_arr, high_arr)
138+ out_arr = <np.ndarray>np.empty(it.shape, np.{{nptype}})
139+
140+ it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
141+ out_data = <uint64_t *>np.PyArray_DATA(out_arr)
142+ n = np.PyArray_SIZE(out_arr)
143+ mask = last_rng = 0
144+ with lock, nogil:
145+ for i in range(n):
146+ low_v = (<{{nptype}}_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
147+ high_v = (<{{nptype}}_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
148+ rng = <{{utype}}_t>(high_v - low_v) # No -1 here since implemented above
149+ off = <{{utype}}_t>(<{{nptype}}_t>low_v)
150+
151+ if rng != last_rng:
152+ mask = _gen_mask(rng)
153+ out_data[i] = random_bounded_uint64(state, off, rng, mask)
154+
155+ np.PyArray_MultiIter_NEXT(it)
156+
157+ return out_arr
158+ {{endfor}}
159+
160+ {{
161+ py:
162+ type_info = (('uint64', 'uint64', '0x0ULL', '0xFFFFFFFFFFFFFFFFULL'),
163+ ('uint32', 'uint32', '0x0UL', '0XFFFFFFFFUL'),
164+ ('uint16', 'uint16', '0x0UL', '0XFFFFUL'),
165+ ('uint8', 'uint8', '0x0UL', '0XFFUL'),
166+ ('bool', 'bool', '0x0UL', '0x1UL'),
167+ ('int64', 'uint64', '-0x8000000000000000LL', '0x7FFFFFFFFFFFFFFFL'),
168+ ('int32', 'uint32', '-0x80000000L', '0x7FFFFFFFL'),
169+ ('int16', 'uint16', '-0x8000L', '0x7FFFL' ),
170+ ('int8', 'uint8', '-0x80L', '0x7FL' )
171+ )}}
172+ {{for nptype, utype, lb, ub in type_info}}
173+ {{ py: otype = nptype + '_' if nptype == 'bool' else nptype }}
162174cdef object _rand_{{nptype}}(object low, object high, object size, aug_state *state, object lock):
163175 """
164176 _rand_{{nptype}}(low, high, size, *state, lock)
@@ -194,34 +206,30 @@ cdef object _rand_{{nptype}}(object low, object high, object size, aug_state *st
194206 `size`-shaped array of random integers from the appropriate
195207 distribution, or a single such random int if `size` not provided.
196208 """
197- cdef np.ndarray low_arr, high_arr, out_arr, highm1_arr
209+ cdef np.ndarray out_arr, low_arr, high_arr
210+ cdef {{utype}}_t rng, off, out_val
211+ cdef {{utype}}_t *out_data
198212 cdef np.npy_intp i, cnt
199- cdef np.broadcast it
200- cdef object closed_upper
201- cdef uint64_t *out_data
202- cdef {{nptype}}_t *highm1_data
203- cdef {{nptype}}_t low_v, high_v
204- cdef uint64_t rng, last_rng, val, mask, off, out_val
205213
206214 if size is not None:
207215 if (np.prod(size) == 0):
208216 return np.empty(size, dtype=np.{{nptype}})
209217
210- low = np.array(low, copy=False)
211- high = np.array(high, copy=False)
212- low_ndim = np.PyArray_NDIM(<np.ndarray>low )
213- high_ndim = np.PyArray_NDIM(<np.ndarray>high )
214- if ((low_ndim == 0 or (low_ndim==1 and low .size==1 and size is not None)) and
215- (high_ndim == 0 or (high_ndim==1 and high .size==1 and size is not None))):
216- low = int(low )
217- high = int(high )
218- high -= 1 # Use a closed interval
218+ low_arr = <np.ndarray> np.array(low, copy=False)
219+ high_arr = <np.ndarray> np.array(high, copy=False)
220+ low_ndim = np.PyArray_NDIM(low_arr )
221+ high_ndim = np.PyArray_NDIM(high_arr )
222+ if ((low_ndim == 0 or (low_ndim==1 and low_arr .size==1 and size is not None)) and
223+ (high_ndim == 0 or (high_ndim==1 and high_arr .size==1 and size is not None))):
224+ low = int(low_arr )
225+ high = int(high_arr )
226+ high -= 1
219227
220228 if low < {{lb}}:
221229 raise ValueError("low is out of bounds for {{nptype}}")
222230 if high > {{ub}}:
223231 raise ValueError("high is out of bounds for {{nptype}}")
224- if low > high:
232+ if low > high: # -1 already subtracted, closed interval
225233 raise ValueError("low >= high")
226234
227235 rng = <{{utype}}_t>(high - low)
@@ -237,53 +245,5 @@ cdef object _rand_{{nptype}}(object low, object high, object size, aug_state *st
237245 with lock, nogil:
238246 random_bounded_{{utype}}_fill(state, off, rng, cnt, out_data)
239247 return out_arr
240-
241- low_arr = <np.ndarray>low
242- high_arr = <np.ndarray>high
243-
244- if np.any(np.less(low_arr, {{lb}})):
245- raise ValueError('low is out of bounds for {{nptype}}')
246-
247- highm1_arr = <np.ndarray>np.empty_like(high_arr, dtype=np.{{nptype}})
248- highm1_data = <{{nptype}}_t *>np.PyArray_DATA(highm1_arr)
249- cnt = np.PyArray_SIZE(high_arr)
250- flat = high_arr.flat
251- for i in range(cnt):
252- closed_upper = int(flat[i]) - 1
253- if closed_upper > {{ub}}:
254- raise ValueError('high is out of bounds for {{nptype}}')
255- if closed_upper < {{lb}}:
256- raise ValueError('low >= high')
257- highm1_data[i] = <{{nptype}}_t>closed_upper
258-
259- if np.any(np.greater(low_arr, highm1_arr)):
260- raise ValueError('low >= high')
261-
262- high_arr = highm1_arr
263- low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.{{npctype}}, np.NPY_ALIGNED | np.NPY_FORCECAST)
264-
265- if size is not None:
266- out_arr = <np.ndarray>np.empty(size, np.{{nptype}})
267- else:
268- it = np.PyArray_MultiIterNew2(low_arr, high_arr)
269- out_arr = <np.ndarray>np.empty(it.shape, np.{{nptype}})
270-
271- it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
272- out_data = <uint64_t *>np.PyArray_DATA(out_arr)
273- n = np.PyArray_SIZE(out_arr)
274- mask = last_rng = 0
275- with lock, nogil:
276- for i in range(n):
277- low_v = (<{{nptype}}_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
278- high_v = (<{{nptype}}_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
279- rng = <{{utype}}_t>(high_v - low_v) # No -1 here since implemented above
280- off = <{{utype}}_t>(<{{nptype}}_t>low_v)
281-
282- if rng != last_rng:
283- mask = _gen_mask(rng)
284- out_data[i] = random_bounded_uint64(state, off, rng, mask)
285-
286- np.PyArray_MultiIter_NEXT(it)
287-
288- return out_arr
248+ return _rand_{{nptype}}_broadcast(low_arr, high_arr, size, state, lock)
289249{{endfor}}
0 commit comments