|
| 1 | +""" |
| 2 | +Image style reconstruction with Gram matrices. |
| 3 | +
|
| 4 | +https://arxiv.org/pdf/1603.08155#page=7&zoom=auto,-294,3 |
| 5 | +""" |
| 6 | + |
| 7 | +import numpy as np |
| 8 | + |
| 9 | + |
| 10 | +def gram_matrix(mat: np.ndarray) -> np.ndarray: |
| 11 | + """ |
| 12 | + Returns the Gram (Gramian) matrix of an image. |
| 13 | +
|
| 14 | + :param mat: matrix of shape (C, H, W); C = color channels, H = height, W = width. |
| 15 | + :type mat: np.ndarray |
| 16 | + :return: matrix of shape (C, C). |
| 17 | + :rtype: np.ndarray |
| 18 | +
|
| 19 | + Examples |
| 20 | + -------- |
| 21 | + >>> gram_matrix(np.ones((2,5,5))) |
| 22 | + array([[0.5, 0.5], |
| 23 | + [0.5, 0.5]]) |
| 24 | + >>> gram_matrix(np.ones((3,5,5))) |
| 25 | + array([[0.33333333, 0.33333333, 0.33333333], |
| 26 | + [0.33333333, 0.33333333, 0.33333333], |
| 27 | + [0.33333333, 0.33333333, 0.33333333]]) |
| 28 | + >>> gram_matrix(np.ones((3,5,5))).shape |
| 29 | + (3, 3) |
| 30 | + """ |
| 31 | + color, height, width = mat.shape |
| 32 | + vec = mat.reshape(color, height * width) |
| 33 | + gram = vec @ vec.T |
| 34 | + return gram / (color * height * width) |
| 35 | + |
| 36 | + |
| 37 | +def gram_loss(input_features: np.ndarray, reference_features: np.ndarray) -> np.float64: |
| 38 | + """ |
| 39 | + Calculates the squared Frobenius norm of the difference between |
| 40 | + the Gram matrices of the input and reference image. |
| 41 | +
|
| 42 | + :param input_features: Feature map of shape (C, H, W) |
| 43 | + :type input_features: np.ndarray |
| 44 | + :param reference_features: Feature map of shape (C, H, W) |
| 45 | + :type reference_features: np.ndarray |
| 46 | + :return: Gram loss between the two feature maps. |
| 47 | + :rtype: float64 |
| 48 | +
|
| 49 | + Examples |
| 50 | + -------- |
| 51 | + >>> a = np.random.randn(3,5,5) |
| 52 | + >>> gram_loss(a, a) |
| 53 | + np.float64(0.0) |
| 54 | + >>> a = np.zeros((3,5,5)) |
| 55 | + >>> b = np.ones((3,5,5)) |
| 56 | + >>> gram_loss(a, b) |
| 57 | + np.float64(1.0) |
| 58 | + """ |
| 59 | + input_gram = gram_matrix(input_features) |
| 60 | + reference_gram = gram_matrix(reference_features) |
| 61 | + return np.sum(np.square(input_gram - reference_gram)).astype(np.float64) |
| 62 | + |
| 63 | + |
| 64 | +if __name__ == "__main__": |
| 65 | + import doctest |
| 66 | + |
| 67 | + doctest.testmod() |
0 commit comments