diff --git a/PRR/smartch4_signatures_modified.ipynb b/PRR/smartch4_signatures_modified.ipynb
new file mode 100755
index 0000000..c299541
--- /dev/null
+++ b/PRR/smartch4_signatures_modified.ipynb
@@ -0,0 +1,11203 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "1f92ff5a",
+ "metadata": {},
+ "source": [
+ "# SmartCH4 project - ÎŽ13CH4 signatures\n",
+ "\n",
+ "This notebook shows how to \n",
+ "\n",
+ "1) Combine a number of .nc files into a .zarr\n",
+ "2) generate a valid STAC collection, which is a requirement to upload research outcomes to the [ESA Project Results Repository (PRR)](https://eoresults.esa.int/). The code below demonstrates how to perform the necessary steps using real data from the ESA project **SMART-CH4**. The focus of SMART-CH4 is to build upon previous experience and projects in satellite-based methane quantification, aiming to enhance emission products derived from satellites.\n",
+ "\n",
+ "\n",
+ "Check the [EarthCODE documentation](https://earthcode.esa.int/), and [PRR STAC introduction example](https://esa-earthcode.github.io/tutorials/prr-stac-introduction) for a more general introduction to STAC and the ESA PRR.\n",
+ "\n",
+ "\n",
+ "\n",
+ "đ Check the project website: [SMART-CH4 â Website](https://smart-ch4.lsce.ipsl.fr/) \n",
+ "\n",
+ "\n",
+ "đ Check the eo4society page: [SMART-CH4 â eo4society](https://eo4society.esa.int/projects/smart-ch4/)\n",
+ "\n",
+ "\n",
+ "#### Acknowledgment \n",
+ "We gratefully acknowledge the **SMART-CH4** for providing access to the data used in this example, as well as their support in creating it."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a77cab24",
+ "metadata": {},
+ "source": [
+ "# 1. Combine the data into a single .zarr file"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 244,
+ "id": "3333ec9c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# import libraries\n",
+ "import xarray as xr\n",
+ "from pystac import Item, Collection\n",
+ "import pystac\n",
+ "from datetime import datetime\n",
+ "from shapely.geometry import box, mapping\n",
+ "from xstac import xarray_to_stac\n",
+ "import glob\n",
+ "import json\n",
+ "import shapely\n",
+ "import numpy as np\n",
+ "import geopandas as gpd\n",
+ "import pandas as pd\n",
+ "import os\n",
+ "import scipy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5bdd14f3",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['/home/etapin/Téléchargements/5_zipped/data',\n",
+ " '/home/etapin/Téléchargements/5_zipped/metadata']"
+ ]
+ },
+ "execution_count": 245,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import glob\n",
+ "datadir = '/mnt/c/Users/krase/Downloads/smart_CH4_d13c_ch4/5_zipped/data/*'\n",
+ "subdirectories = glob.glob(datadir)\n",
+ "subdirectories"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "81575763",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "agw_files = glob.glob('/mnt/c/Users/krase/Downloads/smart_CH4_d13c_ch4/5_zipped/data/smart_CH4_d13c_ch4-agw' + '/*')\n",
+ "bb_files = glob.glob('/mnt/c/Users/krase/Downloads/smart_CH4_d13c_ch4/5_zipped/data/smart_CH4_d13c_ch4-bb' + '/*')\n",
+ "ff_files = glob.glob('/mnt/c/Users/krase/Downloads/smart_CH4_d13c_ch4/5_zipped/data/smart_CH4_d13c_ch4-ff' + '/*')\n",
+ "nat_files = glob.glob('/mnt/c/Users/krase/Downloads/smart_CH4_d13c_ch4/5_zipped/data/smart_CH4_d13c_ch4-nat' + '/*')\n",
+ "wet_files = glob.glob('/mnt/c/Users/krase/Downloads/smart_CH4_d13c_ch4/5_zipped/data/smart_CH4_d13c_ch4-wet' + '/*')\n",
+ "\n",
+ "short_names = [\"agw\", \"bb\", \"ffg\", \"nat\", \"wet\"]\n",
+ "long_names = [\n",
+ " \"agricultural and waste\",\n",
+ " \"biomass burning\",\n",
+ " \"fossil fuel and geological\",\n",
+ " \"natural non-wetland\",\n",
+ " \"wetlands\"\n",
+ "]\n",
+ "\n",
+ "subsector_files = glob.glob('/mnt/c/Users/krase/Downloads/smart_CH4_d13c_ch4/5_zipped/data/smart_CH4_d13c_ch4-subsectors' + '/*')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6ac4b6ff",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "['/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2022.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2021.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2020.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2002.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2016.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2011.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2017.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2013.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2001.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2008.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2009.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2012.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2000.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.1998.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2006.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2018.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2004.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2005.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2010.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2003.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2007.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2014.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2019.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.1999.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-agw/d13c.AGW.2015.1x1.nc']\n",
+ "['/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2020.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2016.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2010.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2003.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2019.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2014.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2007.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2021.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2005.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2002.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2000.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2017.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2009.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2008.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2011.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.1999.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2001.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2013.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2004.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2022.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.1998.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2015.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2012.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2006.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-bb/d13c.BB.2018.1x1.nc']\n",
+ "['/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2004.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2005.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2001.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2015.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2006.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2021.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2009.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2020.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2008.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2014.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2016.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2010.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2019.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.1999.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2017.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2022.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.1998.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2012.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2013.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2003.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2000.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2002.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2018.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2011.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-ff/d13c.FF.2007.1x1.nc']\n",
+ "['/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2012.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.1998.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2013.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2015.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2008.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2009.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2004.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2001.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2021.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2014.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2016.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2006.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2019.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2018.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2010.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2003.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2000.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2022.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2017.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2007.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.1999.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2011.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2020.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2002.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-nat/d13c.NAT.2005.1x1.nc']\n",
+ "['/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2015.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2003.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2018.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2000.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2008.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2006.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2010.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2002.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2014.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2022.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2020.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2004.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.1998.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2001.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2021.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2009.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2019.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2011.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.1999.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2007.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2013.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2016.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2005.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2012.1x1.nc', '/home/etapin/Téléchargements/5_zipped/data/smart_CH4_d13c_ch4-wet/d13c.WET.2017.1x1.nc']\n"
+ ]
+ }
+ ],
+ "source": [
+ "dss = []\n",
+ "\n",
+ "for sname,lname,files in zip(short_names, long_names, [agw_files, bb_files, ff_files, nat_files, wet_files]):\n",
+ " print(files)\n",
+ " ds = xr.open_mfdataset(\n",
+ " files,\n",
+ " concat_dim=\"time\",\n",
+ " combine=\"nested\",\n",
+ " compat=\"equals\",\n",
+ " join=\"exact\"\n",
+ " )\n",
+ " # replace acronym with long name\n",
+ " ds.sign_d13c.attrs['long_name'] = ds.sign_d13c.long_name.replace(sname.upper(), lname)\n",
+ " # assign all the sigma values to each variable\n",
+ " ds.sign_d13c.attrs.update({k:v for k,v in ds.attrs.items() if k.startswith('sigma_')})\n",
+ " # rename sign_d13c to have accronym extension\n",
+ " ds = ds.rename_vars({'sign_d13c': f'sign_d13c_{sname}'})\n",
+ "\n",
+ " ds.attrs = {\n",
+ " \"title\": \"d13C(CH4) isotopic signature\",\n",
+ " \"history\": \"Sub-sectors aggregated into sectors (flux-weighted). NaN values filled with flux-weighted global mean.\",\n",
+ " \"time_period\": \"Monthly data for 1998-2022\",\n",
+ " \"fluxes_source_for_flux_weighted\": \"AGRICULTURAL_WASTE, BIOFUELS, BIOMASS, COAL, LANDFILLS, LIVESTOCK, OILGASIND, RICE, WASTE_WATER: EDGARv8 (Crippa et al. 2023), GEOLOGICAL, OCEANIC, TERMITES, WETLAND: Prior fluxes provided with the Global Methane budget inversion protocol (Martinez et al. 2024)\",\n",
+ " \"signature_source\" : \"LIVESTOCK, BIOFUELS, BIOMASS: LAN ET. AL (2021), WASTE_WATER, LANDFILLS, AGRICULTURAL_WASTE, RICE: MENOUD ET AL. (2022), COAL, OILGASIND: LAN ET. AL (2021), MENOUD ET AL. (2022), WETLAND: OH ET AL. (2022), OCEANIC: SANSONE ET AL. (2001), TERMITES: THOMPSON ET AL. (2018), GEOLOGICAL: ETIOPE ET AL. (2019)\",\n",
+ " \"created_by\": \"Emeline Tapin on 29 September 2025\",\n",
+ " \"creator_email\": \"emeline.tapin@lsce.ipsl.fr\",\n",
+ " \"institution\": \"LSCE (Laboratoire des Sciences du Climat et de lâEnvironnement)\",\n",
+ " \"conventions\": \"CF-1.9\"\n",
+ " }\n",
+ " \n",
+ " dss.append(ds)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 248,
+ "id": "9045a7da",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.Dataset> Size: 778MB\n",
+ "Dimensions: (latitude: 180, longitude: 360, time: 300)\n",
+ "Coordinates:\n",
+ " * latitude (latitude) float64 1kB -89.5 -88.5 -87.5 ... 87.5 88.5 89.5\n",
+ " * longitude (longitude) float64 3kB -179.5 -178.5 -177.5 ... 178.5 179.5\n",
+ " * time (time) datetime64[ns] 2kB 1998-01-01 ... 2022-12-01\n",
+ "Data variables:\n",
+ " sign_d13c_agw (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 180, 360), meta=np.ndarray>\n",
+ " sign_d13c_bb (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 180, 360), meta=np.ndarray>\n",
+ " sign_d13c_ffg (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 180, 360), meta=np.ndarray>\n",
+ " sign_d13c_nat (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 180, 360), meta=np.ndarray>\n",
+ " sign_d13c_wet (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 180, 360), meta=np.ndarray>\n",
+ "Attributes:\n",
+ " title: d13C(CH4) isotopic signature\n",
+ " history: Sub-sectors aggregated into sectors (fl...\n",
+ " time_period: Monthly data for 1998-2022\n",
+ " fluxes_source_for_flux_weighted: AGRICULTURAL_WASTE, BIOFUELS, BIOMASS, ...\n",
+ " signature_source: LIVESTOCK, BIOFUELS, BIOMASS: LAN ET. A...\n",
+ " created_by: Emeline Tapin on 29 September 2025\n",
+ " creator_email: emeline.tapin@lsce.ipsl.fr\n",
+ " institution: LSCE (Laboratoire des Sciences du Clima...\n",
+ " conventions: CF-1.9 Dimensions: latitude : 180longitude : 360time : 300
Coordinates: (3)
latitude
(latitude)
float64
-89.5 -88.5 -87.5 ... 88.5 89.5
standard_name : latitude long_name : latitude units : degrees_north axis : Y bounds : lat_bnds array([-89.5, -88.5, -87.5, -86.5, -85.5, -84.5, -83.5, -82.5, -81.5, -80.5,\n",
+ " -79.5, -78.5, -77.5, -76.5, -75.5, -74.5, -73.5, -72.5, -71.5, -70.5,\n",
+ " -69.5, -68.5, -67.5, -66.5, -65.5, -64.5, -63.5, -62.5, -61.5, -60.5,\n",
+ " -59.5, -58.5, -57.5, -56.5, -55.5, -54.5, -53.5, -52.5, -51.5, -50.5,\n",
+ " -49.5, -48.5, -47.5, -46.5, -45.5, -44.5, -43.5, -42.5, -41.5, -40.5,\n",
+ " -39.5, -38.5, -37.5, -36.5, -35.5, -34.5, -33.5, -32.5, -31.5, -30.5,\n",
+ " -29.5, -28.5, -27.5, -26.5, -25.5, -24.5, -23.5, -22.5, -21.5, -20.5,\n",
+ " -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, -13.5, -12.5, -11.5, -10.5,\n",
+ " -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5,\n",
+ " 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5,\n",
+ " 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5,\n",
+ " 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5,\n",
+ " 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5,\n",
+ " 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5,\n",
+ " 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5,\n",
+ " 60.5, 61.5, 62.5, 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5,\n",
+ " 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5, 77.5, 78.5, 79.5,\n",
+ " 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5]) longitude
(longitude)
float64
-179.5 -178.5 ... 178.5 179.5
standard_name : longitude long_name : longitude units : degrees_east axis : X bounds : lon_bnds array([-179.5, -178.5, -177.5, ..., 177.5, 178.5, 179.5]) time
(time)
datetime64[ns]
1998-01-01 ... 2022-12-01
standard_name : time long_name : time axis : T array(['1998-01-01T00:00:00.000000000', '1998-02-01T00:00:00.000000000',\n",
+ " '1998-03-01T00:00:00.000000000', ..., '2022-10-01T00:00:00.000000000',\n",
+ " '2022-11-01T00:00:00.000000000', '2022-12-01T00:00:00.000000000'],\n",
+ " dtype='datetime64[ns]') Data variables: (5)
sign_d13c_agw
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 180, 360), meta=np.ndarray>
long_name : Monthly flux-weighted d13C(CH4) isotopic signature for agricultural and waste units : permil vs V-PDB sigma_prop_min : 0.5 sigma_prop_max : 2.8 sigma_agg : 1.7 sigma_total_min : 1.8 sigma_total_max : 3.3 sigma_uncertainty_units : permil vs V-PDB sigma_prop_min_description : Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates sigma_prop_max_description : Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations sigma_agg_description : Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights sigma_total_min_description : Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) sigma_total_max_description : Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 5.93 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 180, 360) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 25 chunks in 52 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_bb
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 180, 360), meta=np.ndarray>
long_name : Monthly flux-weighted d13C(CH4) isotopic signature for biomass burning units : permil vs V-PDB sigma_prop_min : 0.5 sigma_prop_max : 6.0 sigma_agg : 0.1 sigma_total_min : 0.5 sigma_total_max : 6.0 sigma_uncertainty_units : permil vs V-PDB sigma_prop_min_description : Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates sigma_prop_max_description : Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations sigma_agg_description : Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights sigma_total_min_description : Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) sigma_total_max_description : Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 5.93 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 180, 360) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 25 chunks in 52 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_ffg
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 180, 360), meta=np.ndarray>
long_name : Monthly flux-weighted d13C(CH4) isotopic signature for FF units : permil vs V-PDB sigma_prop_min : 1.1 sigma_prop_max : 5.2 sigma_agg : 1.0 sigma_total_min : 1.5 sigma_total_max : 5.3 sigma_uncertainty_units : permil vs V-PDB sigma_prop_min_description : Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates sigma_prop_max_description : Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations sigma_agg_description : Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights sigma_total_min_description : Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) sigma_total_max_description : Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 5.93 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 180, 360) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 25 chunks in 52 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_nat
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 180, 360), meta=np.ndarray>
long_name : Monthly flux-weighted d13C(CH4) isotopic signature for natural non-wetland units : permil vs V-PDB sigma_prop_min : 2.0 sigma_prop_max : 5.4 sigma_agg : 0.0 sigma_total_min : 2.0 sigma_total_max : 5.4 sigma_uncertainty_units : permil vs V-PDB sigma_prop_min_description : Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates sigma_prop_max_description : Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations sigma_agg_description : Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights sigma_total_min_description : Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) sigma_total_max_description : Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 5.93 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 180, 360) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 25 chunks in 52 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_wet
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 180, 360), meta=np.ndarray>
long_name : Monthly flux-weighted d13C(CH4) isotopic signature for wetlands units : permil vs V-PDB sigma_prop_min : 0.4 sigma_prop_max : 8.2 sigma_agg : 0.0 sigma_total_min : 0.4 sigma_total_max : 8.2 sigma_uncertainty_units : permil vs V-PDB sigma_prop_min_description : Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates sigma_prop_max_description : Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations sigma_agg_description : Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights sigma_total_min_description : Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) sigma_total_max_description : Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 5.93 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 180, 360) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 25 chunks in 52 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
Indexes: (3)
PandasIndex
PandasIndex(Index([-89.5, -88.5, -87.5, -86.5, -85.5, -84.5, -83.5, -82.5, -81.5, -80.5,\n",
+ " ...\n",
+ " 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5],\n",
+ " dtype='float64', name='latitude', length=180)) PandasIndex
PandasIndex(Index([-179.5, -178.5, -177.5, -176.5, -175.5, -174.5, -173.5, -172.5, -171.5,\n",
+ " -170.5,\n",
+ " ...\n",
+ " 170.5, 171.5, 172.5, 173.5, 174.5, 175.5, 176.5, 177.5, 178.5,\n",
+ " 179.5],\n",
+ " dtype='float64', name='longitude', length=360)) PandasIndex
PandasIndex(DatetimeIndex(['1998-01-01', '1998-02-01', '1998-03-01', '1998-04-01',\n",
+ " '1998-05-01', '1998-06-01', '1998-07-01', '1998-08-01',\n",
+ " '1998-09-01', '1998-10-01',\n",
+ " ...\n",
+ " '2022-03-01', '2022-04-01', '2022-05-01', '2022-06-01',\n",
+ " '2022-07-01', '2022-08-01', '2022-09-01', '2022-10-01',\n",
+ " '2022-11-01', '2022-12-01'],\n",
+ " dtype='datetime64[ns]', name='time', length=300, freq='MS')) Attributes: (9)
title : d13C(CH4) isotopic signature history : Sub-sectors aggregated into sectors (flux-weighted). NaN values filled with flux-weighted global mean. time_period : Monthly data for 1998-2022 fluxes_source_for_flux_weighted : AGRICULTURAL_WASTE, BIOFUELS, BIOMASS, COAL, LANDFILLS, LIVESTOCK, OILGASIND, RICE, WASTE_WATER: EDGARv8 (Crippa et al. 2023), GEOLOGICAL, OCEANIC, TERMITES, WETLAND: Prior fluxes provided with the Global Methane budget inversion protocol (Martinez et al. 2024) signature_source : LIVESTOCK, BIOFUELS, BIOMASS: LAN ET. AL (2021), WASTE_WATER, LANDFILLS, AGRICULTURAL_WASTE, RICE: MENOUD ET AL. (2022), COAL, OILGASIND: LAN ET. AL (2021), MENOUD ET AL. (2022), WETLAND: OH ET AL. (2022), OCEANIC: SANSONE ET AL. (2001), TERMITES: THOMPSON ET AL. (2018), GEOLOGICAL: ETIOPE ET AL. (2019) created_by : Emeline Tapin on 29 September 2025 creator_email : emeline.tapin@lsce.ipsl.fr institution : LSCE (Laboratoire des Sciences du Climat et de lâEnvironnement) conventions : CF-1.9 "
+ ],
+ "text/plain": [
+ " Size: 778MB\n",
+ "Dimensions: (latitude: 180, longitude: 360, time: 300)\n",
+ "Coordinates:\n",
+ " * latitude (latitude) float64 1kB -89.5 -88.5 -87.5 ... 87.5 88.5 89.5\n",
+ " * longitude (longitude) float64 3kB -179.5 -178.5 -177.5 ... 178.5 179.5\n",
+ " * time (time) datetime64[ns] 2kB 1998-01-01 ... 2022-12-01\n",
+ "Data variables:\n",
+ " sign_d13c_agw (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_bb (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_ffg (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_nat (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_wet (time, latitude, longitude) float64 156MB dask.array\n",
+ "Attributes:\n",
+ " title: d13C(CH4) isotopic signature\n",
+ " history: Sub-sectors aggregated into sectors (fl...\n",
+ " time_period: Monthly data for 1998-2022\n",
+ " fluxes_source_for_flux_weighted: AGRICULTURAL_WASTE, BIOFUELS, BIOMASS, ...\n",
+ " signature_source: LIVESTOCK, BIOFUELS, BIOMASS: LAN ET. A...\n",
+ " created_by: Emeline Tapin on 29 September 2025\n",
+ " creator_email: emeline.tapin@lsce.ipsl.fr\n",
+ " institution: LSCE (Laboratoire des Sciences du Clima...\n",
+ " conventions: CF-1.9"
+ ]
+ },
+ "execution_count": 248,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ds = xr.merge(dss)\n",
+ "ds"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 249,
+ "id": "9d12443f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Processing subsector: geological\n",
+ "Processing subsector: coal\n",
+ "Processing subsector: termites\n",
+ "Processing subsector: oceanic\n",
+ "Processing subsector: rice\n",
+ "Processing subsector: landfills\n",
+ "Processing subsector: agricultural_waste\n",
+ "Processing subsector: livestock\n",
+ "Processing subsector: wetlands\n",
+ "Processing subsector: biomassbiofuels\n",
+ "Processing subsector: waste_water\n",
+ "Processing subsector: oilandgas\n",
+ "\n",
+ "Merging subsector data with main dataset...\n",
+ "\n",
+ " Final dataset now contains 17 variables:\n",
+ " - sign_d13c_agw: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_bb: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_ffg: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_nat: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_wet: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_sub_sector_geological: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_sub_sector_coal: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_sub_sector_termites: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_sub_sector_oceanic: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_sub_sector_rice: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_sub_sector_landfills: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_sub_sector_agricultural_waste: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_sub_sector_livestock: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_sub_sector_wetlands: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_sub_sector_biomassbiofuels: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_sub_sector_waste_water: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n",
+ " - sign_d13c_sub_sector_oilandgas: ('time', 'latitude', 'longitude'), dtype=float64, chunks=((12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), (90, 90), (180, 180))\n"
+ ]
+ }
+ ],
+ "source": [
+ "### Process subsectors\n",
+ "\n",
+ "# Load and process all subsector datasets\n",
+ "subsector_datasets = []\n",
+ "\n",
+ "for subsector_file in subsector_files:\n",
+ " # Extract filename and subsector name\n",
+ " filename = os.path.basename(subsector_file)\n",
+ " subsector_name = filename.split('.')[1]\n",
+ " print(f\"Processing subsector: {subsector_name}\")\n",
+ "\n",
+ " subsector_ds = xr.open_dataset(\n",
+ " subsector_file,\n",
+ " chunks={\"time\": 12, \"latitude\": 180, \"longitude\": 360}\n",
+ " )\n",
+ " # Check and align the time dimension\n",
+ " if 'time' in subsector_ds.dims:\n",
+ " if len(subsector_ds.time) == 24: # for annual data\n",
+ " subsector_ds = subsector_ds.reindex(\n",
+ " time=ds.time, method=None, fill_value=np.nan\n",
+ " )\n",
+ " subsector_ds = subsector_ds.ffill(dim='time')\n",
+ "\n",
+ " else: \n",
+ " subsector_ds = subsector_ds.interp(time=ds.time, method='linear')\n",
+ " else:\n",
+ " # Replicate the data along the main dataset time dimension\n",
+ " subsector_ds_list = [subsector_ds for _ in range(len(ds.time))]\n",
+ " subsector_ds = xr.concat(subsector_ds_list, dim='time')\n",
+ " subsector_ds = subsector_ds.assign_coords(time=ds.time)\n",
+ "\n",
+ " # Reorder dimensions to match (time, latitude, longitude)\n",
+ " subsector_ds = subsector_ds.transpose(\"time\", \"latitude\", \"longitude\")\n",
+ "\n",
+ " # Define standardized variable name\n",
+ " var_name = f'sign_d13c_sub_sector_{subsector_name}'\n",
+ " subsector_ds = subsector_ds.rename({'sign_d13c': var_name})\n",
+ "\n",
+ " # Harmonize variable attributes\n",
+ " subsector_ds[var_name].attrs['long_name'] = f\"Monthly ÎŽ13C(CH4) isotopic signature for {subsector_name.replace('_', ' ')}\"\n",
+ " subsector_ds[var_name].attrs.update({k:v for k,v in subsector_ds.attrs.items() if k.startswith('std_')})\n",
+ " subsector_datasets.append(subsector_ds)\n",
+ "\n",
+ "# Clean and consistent merge with main dataset\n",
+ "print(\"\\nMerging subsector data with main dataset...\")\n",
+ "for subsector_ds in subsector_datasets:\n",
+ " ds = xr.merge([ds, subsector_ds], compat='override', join='exact')\n",
+ " \n",
+ "# Rechunk all variables to the same chunk size\n",
+ "ds = ds.chunk({\"time\": 12, \"latitude\": 90, \"longitude\": 180})\n",
+ "\n",
+ "# Final verification\n",
+ "print(f\"\\n Final dataset now contains {len(ds.data_vars)} variables:\")\n",
+ "for var in ds.data_vars:\n",
+ " v = ds[var]\n",
+ " print(f\" - {var}: {v.dims}, dtype={v.dtype}, chunks={getattr(v.data, 'chunks', None)}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6161e2c3",
+ "metadata": {},
+ "source": [
+ "## 2. Generate metadata\n",
+ "\n",
+ "The root STAC Collection provides a general description of all project outputs which will be stored on the PRR.\n",
+ "The PRR STAC Collection template enforces some required fields that you need to provide in order to build its valid description. Most of these metadata fields should already be available and can be extracted from your data.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 237,
+ "id": "4029fcb4-4298-4236-8413-923d6bf64c11",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "
\n",
+ " <Collection id=d13c-ch4-signatures-smart-ch4>\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"Collection\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " id \n",
+ " \"d13c-ch4-signatures-smart-ch4\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " stac_version \n",
+ " \"1.1.0\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"This dataset provides monthly gridded ÎŽ13C(CHâ) isotopic signatures (â° vs V-PDB) for five methane emission sectors: Agricultural & Waste (AGW), Fossil Fuel & Geological (FFG), Biomass Burning (BB), Natural non-wetland (NAT), and Wetlands (WET), and their subsequent sub-sectors, at 1°Ă1° spatial resolution for the period 1998â2022. Each sector file contains monthly flux-weighted ÎŽ13C(CHâ) signatures computed from prior CHâ emissions used in the Global Methane Budget inversion protocol (Martinez et al., 2024), EDGARv8 (Crippa et al., 2023), and GFED4s (van Wees et al., 2022). Sub-sector ÎŽ13C-CHâ source values are derived from recent literature (Lan et al., 2021; Menoud et al., 2022; Oh et al., 2022; Thompson et al., 2018; Etiope et al., 2019; Sansone et al., 2001). The dataset also includes uncertainty components: propagated (Ïprop), aggregation (Ïagg), and total (Ïtotal), expressed in â° vs V-PDB. Data are suitable for use in atmospheric inversion and isotope modeling frameworks.\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " links [] 0 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " title \n",
+ " \"Global delta-13C(CH4) Source Signatures\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " extent \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " spatial \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " bbox [] 1 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 [] 4 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " -180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " -90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " temporal \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " interval [] 1 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 [] 2 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"1998-01-01T00:00:00Z\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"2022-12-31T23:59:59Z\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " license \n",
+ " \"CC-BY-4.0\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 237,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# create the parent collection\n",
+ "collectionid = \"d13c-ch4-signatures-smart-ch4\"\n",
+ "\n",
+ "\n",
+ "collection = Collection.from_dict(\n",
+ " \n",
+ "{\n",
+ " \"type\": \"Collection\",\n",
+ " \"id\": collectionid,\n",
+ " \"stac_version\": \"1.1.0\",\n",
+ " \"title\": \"Global delta-13C(CH4) Source Signatures\",\n",
+ " \"description\": \"This dataset provides monthly gridded ÎŽ13C(CHâ) isotopic signatures (â° vs V-PDB) for five methane emission sectors: Agricultural & Waste (AGW), Fossil Fuel & Geological (FFG), Biomass Burning (BB), Natural non-wetland (NAT), and Wetlands (WET), and their subsequent sub-sectors, at 1°Ă1° spatial resolution for the period 1998â2022. Each sector file contains monthly flux-weighted ÎŽ13C(CHâ) signatures computed from prior CHâ emissions used in the Global Methane Budget inversion protocol (Martinez et al., 2024), EDGARv8 (Crippa et al., 2023), and GFED4s (van Wees et al., 2022). Sub-sector ÎŽ13C-CHâ source values are derived from recent literature (Lan et al., 2021; Menoud et al., 2022; Oh et al., 2022; Thompson et al., 2018; Etiope et al., 2019; Sansone et al., 2001). The dataset also includes uncertainty components: propagated (Ïprop), aggregation (Ïagg), and total (Ïtotal), expressed in â° vs V-PDB. Data are suitable for use in atmospheric inversion and isotope modeling frameworks.\",\n",
+ " \"extent\": {\n",
+ " \"spatial\": {\n",
+ " \"bbox\": [\n",
+ " [-180, -90, 180, 90]\n",
+ " ]\n",
+ " },\n",
+ " \"temporal\": {\n",
+ " \"interval\": [\n",
+ " [\n",
+ " \"1998-01-01T00:00:00Z\",\n",
+ " \"2022-12-31T23:59:59Z\"\n",
+ " ]\n",
+ " ]\n",
+ " }\n",
+ " },\n",
+ " \"license\": \"CC-BY-4.0\",\n",
+ " \"links\": []\n",
+ "\n",
+ "}\n",
+ "\n",
+ ")\n",
+ "\n",
+ "collection # visualise the metadata of your collection "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2ab07efc",
+ "metadata": {},
+ "source": [
+ "## Create STAC Items and STAC Assets from original dataset \n",
+ "\n",
+ "The second step is to describe the different files as STAC Items and Assets. Take your time to decide how your data should be categorised to improve usability of the data, and ensure intuitive navigation through different items in the collections. There are multiple strategies for doing this and this tutorial demonstrate one of the possible ways of doing that. Examples of how other ESA projects are doing this are available in the [EarthCODE documentation](https://esa-earthcode.github.io/tutorials/prr-stac-introduction) ."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 238,
+ "id": "f3030914-50f9-493e-abfd-4f7cca4fb1ab",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "bbox = [-180, -90, 180, 90]\n",
+ "geometry = json.loads(json.dumps(shapely.box(*bbox).__geo_interface__))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 239,
+ "id": "ee61a0f7",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "
\n",
+ " <Link rel=item target=<Item id=d13c-ch4-signatures-smart-ch4-zarr>>\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " rel \n",
+ " \"item\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " href \n",
+ " None \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"application/geo+json\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " >"
+ ]
+ },
+ "execution_count": 239,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "template = {\n",
+ "\n",
+ " \"id\": f\"{collectionid}-zarr\",\n",
+ " \"type\": \"Feature\",\n",
+ " \"stac_version\": \"1.0.0\",\n",
+ " \"properties\": {\n",
+ " \"title\": 'd13C(CH4) isotopic signatures',\n",
+ " \"history\":ds.attrs['history'],\n",
+ " 'time_period': \"Monthly data from 1998 to 2022\",\n",
+ " \"fluxes_source_for_flux_weighted\": ds.attrs['fluxes_source_for_flux_weighted'],\n",
+ " \"signature_source\": ds.attrs['signature_source'],\n",
+ " \"start_datetime\": \"1998-01-01T00:00:00Z\",\n",
+ " \"end_datetime\": \"2022-12-31T23:59:59Z\",\n",
+ " \"license\": \"CC-BY-4.0\",\n",
+ " 'Conventions': 'CF-1.9',\n",
+ " \"references\": [\n",
+ " \"Lan et al. (2021)\",\n",
+ " \"Menoud et al. (2022)\",\n",
+ " \"Oh et al. (2022)\",\n",
+ " \"Thompson et al. (2018)\",\n",
+ " \"Etiope et al. (2019)\",\n",
+ " \"Sansone et al. (2001)\",\n",
+ " \"Crippa et al. (2023)\",\n",
+ " \"Martinez et al. (2024)\"\n",
+ " ],\n",
+ " },\n",
+ " \"geometry\": geometry,\n",
+ " \"bbox\": bbox,\n",
+ " \"assets\": {\n",
+ " \"data\": {\n",
+ " \"href\": f\"./{collectionid}/ds.zarr\", # or local path\n",
+ " \"type\": \"application/vnd+zarr\",\n",
+ " \"roles\": [\"data\"],\n",
+ " \"title\": \"Zarr Store of d13C(CH4) signatures\"\n",
+ " }\n",
+ " }\n",
+ "}\n",
+ "# 3. Generate the STAC Item\n",
+ "item = xarray_to_stac(\n",
+ " ds,\n",
+ " template,\n",
+ " temporal_dimension=\"time\" if 'time' in ds.coords else False,\n",
+ " x_dimension='longitude',\n",
+ " y_dimension='latitude',\n",
+ " reference_system=False\n",
+ ")\n",
+ "\n",
+ "# validate and add the STAC Item to the collection\n",
+ "item.validate()\n",
+ "collection.add_item(item)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 240,
+ "id": "2c2ee4de-afd1-41fb-9afd-73ccbfe8ef98",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "
\n",
+ " <Collection id=d13c-ch4-signatures-smart-ch4>\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"Collection\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " id \n",
+ " \"d13c-ch4-signatures-smart-ch4\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " stac_version \n",
+ " \"1.1.0\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"This dataset provides monthly gridded ÎŽ13C(CHâ) isotopic signatures (â° vs V-PDB) for five methane emission sectors: Agricultural & Waste (AGW), Fossil Fuel & Geological (FFG), Biomass Burning (BB), Natural non-wetland (NAT), and Wetlands (WET), and their subsequent sub-sectors, at 1°Ă1° spatial resolution for the period 1998â2022. Each sector file contains monthly flux-weighted ÎŽ13C(CHâ) signatures computed from prior CHâ emissions used in the Global Methane Budget inversion protocol (Martinez et al., 2024), EDGARv8 (Crippa et al., 2023), and GFED4s (van Wees et al., 2022). Sub-sector ÎŽ13C-CHâ source values are derived from recent literature (Lan et al., 2021; Menoud et al., 2022; Oh et al., 2022; Thompson et al., 2018; Etiope et al., 2019; Sansone et al., 2001). The dataset also includes uncertainty components: propagated (Ïprop), aggregation (Ïagg), and total (Ïtotal), expressed in â° vs V-PDB. Data are suitable for use in atmospheric inversion and isotope modeling frameworks.\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " links [] 1 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " rel \n",
+ " \"item\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " href \n",
+ " None \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"application/geo+json\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " title \n",
+ " \"Global delta-13C(CH4) Source Signatures\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " extent \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " spatial \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " bbox [] 1 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 [] 4 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " -180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " -90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " temporal \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " interval [] 1 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 [] 2 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"1998-01-01T00:00:00Z\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"2022-12-31T23:59:59Z\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " license \n",
+ " \"CC-BY-4.0\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 240,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "collection"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 241,
+ "id": "3c358a3e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "
\n",
+ " <Item id=d13c-ch4-signatures-smart-ch4-zarr>\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"Feature\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " stac_version \n",
+ " \"1.1.0\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " stac_extensions [] 1 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"https://stac-extensions.github.io/datacube/v2.2.0/schema.json\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " id \n",
+ " \"d13c-ch4-signatures-smart-ch4-zarr\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " geometry \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"Polygon\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " coordinates [] 1 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 [] 5 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 [] 2 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 180.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " -90.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 [] 2 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 180.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 [] 2 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " -180.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 3 [] 2 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " -180.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " -90.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 4 [] 2 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 180.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " -90.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " bbox [] 4 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " -180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " -90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " properties \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " title \n",
+ " \"d13C(CH4) isotopic signatures\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " history \n",
+ " \"Sub-sectors aggregated into sectors (flux-weighted). NaN values filled with flux-weighted global mean.\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " time_period \n",
+ " \"Monthly data from 1998 to 2022\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " fluxes_source_for_flux_weighted \n",
+ " \"AGRICULTURAL_WASTE, BIOFUELS, BIOMASS, COAL, LANDFILLS, LIVESTOCK, OILGASIND, RICE, WASTE_WATER: EDGARv8 (Crippa et al. 2023), GEOLOGICAL, OCEANIC, TERMITES, WETLAND: Prior fluxes provided with the Global Methane budget inversion protocol (Martinez et al. 2024)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " signature_source \n",
+ " \"LIVESTOCK, BIOFUELS, BIOMASS: LAN ET. AL (2021), WASTE_WATER, LANDFILLS, AGRICULTURAL_WASTE, RICE: MENOUD ET AL. (2022), COAL, OILGASIND: LAN ET. AL (2021), MENOUD ET AL. (2022), WETLAND: OH ET AL. (2022), OCEANIC: SANSONE ET AL. (2001), TERMITES: THOMPSON ET AL. (2018), GEOLOGICAL: ETIOPE ET AL. (2019)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " start_datetime \n",
+ " \"1998-01-01T00:00:00Z\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " end_datetime \n",
+ " \"2022-12-31T23:59:59Z\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " license \n",
+ " \"CC-BY-4.0\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Conventions \n",
+ " \"CF-1.9\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " references [] 8 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"Oh et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " \"Thompson et al. (2018)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " \"Etiope et al. (2019)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " \"Sansone et al. (2001)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " \"Crippa et al. (2023)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " \"Martinez et al. (2024)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " cube:dimensions \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " time \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " extent [] 2 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"1998-01-01T00:00:00Z\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"2022-12-01T00:00:00Z\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"temporal\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " longitude \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " axis \n",
+ " \"x\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " extent [] 2 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " -179.5 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 179.5 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " step \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"spatial\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " latitude \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " axis \n",
+ " \"y\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " extent [] 2 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " -89.5 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 89.5 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " step \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"spatial\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " cube:variables \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_agw \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly flux-weighted d13C(CH4) isotopic signature for agricultural and waste\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly flux-weighted d13C(CH4) isotopic signature for agricultural and waste\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_min \n",
+ " 0.5 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_max \n",
+ " 2.8 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_agg \n",
+ " 1.7 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_min \n",
+ " 1.8 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_max \n",
+ " 3.3 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_uncertainty_units \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_min_description \n",
+ " \"Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_max_description \n",
+ " \"Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_agg_description \n",
+ " \"Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_min_description \n",
+ " \"Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_max_description \n",
+ " \"Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_bb \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly flux-weighted d13C(CH4) isotopic signature for biomass burning\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly flux-weighted d13C(CH4) isotopic signature for biomass burning\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_min \n",
+ " 0.5 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_max \n",
+ " 6.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_agg \n",
+ " 0.1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_min \n",
+ " 0.5 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_max \n",
+ " 6.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_uncertainty_units \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_min_description \n",
+ " \"Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_max_description \n",
+ " \"Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_agg_description \n",
+ " \"Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_min_description \n",
+ " \"Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_max_description \n",
+ " \"Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_ffg \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly flux-weighted d13C(CH4) isotopic signature for FF\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly flux-weighted d13C(CH4) isotopic signature for FF\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_min \n",
+ " 1.1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_max \n",
+ " 5.2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_agg \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_min \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_max \n",
+ " 5.3 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_uncertainty_units \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_min_description \n",
+ " \"Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_max_description \n",
+ " \"Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_agg_description \n",
+ " \"Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_min_description \n",
+ " \"Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_max_description \n",
+ " \"Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_nat \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly flux-weighted d13C(CH4) isotopic signature for natural non-wetland\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly flux-weighted d13C(CH4) isotopic signature for natural non-wetland\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_min \n",
+ " 2.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_max \n",
+ " 5.4 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_agg \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_min \n",
+ " 2.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_max \n",
+ " 5.4 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_uncertainty_units \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_min_description \n",
+ " \"Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_max_description \n",
+ " \"Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_agg_description \n",
+ " \"Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_min_description \n",
+ " \"Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_max_description \n",
+ " \"Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_wet \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly flux-weighted d13C(CH4) isotopic signature for wetlands\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly flux-weighted d13C(CH4) isotopic signature for wetlands\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_min \n",
+ " 0.4 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_max \n",
+ " 8.2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_agg \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_min \n",
+ " 0.4 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_max \n",
+ " 8.2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_uncertainty_units \n",
+ " \"permil vs V-PDB\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_min_description \n",
+ " \"Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_prop_max_description \n",
+ " \"Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_agg_description \n",
+ " \"Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_min_description \n",
+ " \"Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sigma_total_max_description \n",
+ " \"Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_sub_sector_geological \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for geological\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for geological\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud \n",
+ " 1.6 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_comment \n",
+ " \"Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_comment \n",
+ " \"Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_sub_sector_coal \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for coal\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for coal\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud \n",
+ " 10.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_comment \n",
+ " \"Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan \n",
+ " 3.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_comment \n",
+ " \"Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_sub_sector_termites \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for termites\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for termites\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud \n",
+ " 7.6 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_comment \n",
+ " \"Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan \n",
+ " 2.8 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_comment \n",
+ " \"Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_sub_sector_oceanic \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for oceanic\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for oceanic\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud \n",
+ " 7.6 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_comment \n",
+ " \"Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan \n",
+ " 2.8 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_comment \n",
+ " \"Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_sub_sector_rice \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for rice\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for rice\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud \n",
+ " 4.5 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_comment \n",
+ " \"Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan \n",
+ " 1.1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_comment \n",
+ " \"Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_sub_sector_landfills \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for landfills\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for landfills\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud \n",
+ " 3.4 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_comment \n",
+ " \"Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan \n",
+ " 1.7 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_comment \n",
+ " \"Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_sub_sector_agricultural_waste \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for agricultural waste\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for agricultural waste\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud \n",
+ " 6.6 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_comment \n",
+ " \"Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan \n",
+ " 1.7 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_comment \n",
+ " \"Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_sub_sector_livestock \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for livestock\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for livestock\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud \n",
+ " 5.8 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_comment \n",
+ " \"Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan \n",
+ " 0.2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_comment \n",
+ " \"Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_sub_sector_wetlands \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for wetlands\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for wetlands\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud \n",
+ " 8.2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_comment \n",
+ " \"Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan \n",
+ " 0.4 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_comment \n",
+ " \"Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_sub_sector_biomassbiofuels \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for biomassbiofuels\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for biomassbiofuels\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud \n",
+ " 11.2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_comment \n",
+ " \"Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan \n",
+ " 5.2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_comment \n",
+ " \"Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_sub_sector_waste_water \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for waste water\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for waste water\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud \n",
+ " 3.2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_comment \n",
+ " \"Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan \n",
+ " 1.7 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_comment \n",
+ " \"Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " sign_d13c_sub_sector_oilandgas \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for oilandgas\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " dimensions [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"time\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"latitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \"longitude\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " unit \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " attrs \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " long_name \n",
+ " \"Monthly ÎŽ13C(CH4) isotopic signature for oilandgas\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud \n",
+ " 7.7 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_menoud_comment \n",
+ " \"Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_long_name \n",
+ " \"Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021)\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_units \n",
+ " \"permil\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " std_i_lan_comment \n",
+ " \"Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " shape [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 360 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " chunks [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " datetime \n",
+ " None \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " links [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " rel \n",
+ " \"root\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " href \n",
+ " None \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"application/json\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " title \n",
+ " \"Global delta-13C(CH4) Source Signatures\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " rel \n",
+ " \"parent\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " href \n",
+ " None \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"application/json\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " title \n",
+ " \"Global delta-13C(CH4) Source Signatures\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " rel \n",
+ " \"collection\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " href \n",
+ " None \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"application/json\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " title \n",
+ " \"Global delta-13C(CH4) Source Signatures\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " assets \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " data \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " href \n",
+ " \"./d13c-ch4-signatures-smart-ch4/ds.zarr\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"application/vnd+zarr\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " title \n",
+ " \"Zarr Store of d13C(CH4) signatures\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " roles [] 1 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"data\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " collection \n",
+ " \"d13c-ch4-signatures-smart-ch4\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "- "
+ ]
+ },
+ "execution_count": 241,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "item"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 242,
+ "id": "66fe3b40",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.Dataset> Size: 3GB\n",
+ "Dimensions: (latitude: 180, longitude: 360,\n",
+ " time: 300)\n",
+ "Coordinates:\n",
+ " * latitude (latitude) float64 1kB -89.5 ......\n",
+ " * longitude (longitude) float64 3kB -179.5 ....\n",
+ " * time (time) datetime64[ns] 2kB 1998-0...\n",
+ "Data variables: (12/17)\n",
+ " sign_d13c_agw (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 90, 180), meta=np.ndarray>\n",
+ " sign_d13c_bb (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 90, 180), meta=np.ndarray>\n",
+ " sign_d13c_ffg (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 90, 180), meta=np.ndarray>\n",
+ " sign_d13c_nat (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 90, 180), meta=np.ndarray>\n",
+ " sign_d13c_wet (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 90, 180), meta=np.ndarray>\n",
+ " sign_d13c_sub_sector_geological (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 90, 180), meta=np.ndarray>\n",
+ " ... ...\n",
+ " sign_d13c_sub_sector_agricultural_waste (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 90, 180), meta=np.ndarray>\n",
+ " sign_d13c_sub_sector_livestock (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 90, 180), meta=np.ndarray>\n",
+ " sign_d13c_sub_sector_wetlands (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 90, 180), meta=np.ndarray>\n",
+ " sign_d13c_sub_sector_biomassbiofuels (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 90, 180), meta=np.ndarray>\n",
+ " sign_d13c_sub_sector_waste_water (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 90, 180), meta=np.ndarray>\n",
+ " sign_d13c_sub_sector_oilandgas (time, latitude, longitude) float64 156MB dask.array<chunksize=(12, 90, 180), meta=np.ndarray>\n",
+ "Attributes:\n",
+ " title: d13C(CH4) isotopic signature\n",
+ " history: Sub-sectors aggregated into sectors (fl...\n",
+ " time_period: Monthly data for 1998-2022\n",
+ " fluxes_source_for_flux_weighted: AGRICULTURAL_WASTE, BIOFUELS, BIOMASS, ...\n",
+ " signature_source: LIVESTOCK, BIOFUELS, BIOMASS: LAN ET. A...\n",
+ " created_by: Emeline Tapin on 29 September 2025\n",
+ " creator_email: emeline.tapin@lsce.ipsl.fr\n",
+ " institution: LSCE (Laboratoire des Sciences du Clima...\n",
+ " conventions: CF-1.9 Dimensions: latitude : 180longitude : 360time : 300
Coordinates: (3)
latitude
(latitude)
float64
-89.5 -88.5 -87.5 ... 88.5 89.5
standard_name : latitude long_name : latitude units : degrees_north axis : Y bounds : lat_bnds array([-89.5, -88.5, -87.5, -86.5, -85.5, -84.5, -83.5, -82.5, -81.5, -80.5,\n",
+ " -79.5, -78.5, -77.5, -76.5, -75.5, -74.5, -73.5, -72.5, -71.5, -70.5,\n",
+ " -69.5, -68.5, -67.5, -66.5, -65.5, -64.5, -63.5, -62.5, -61.5, -60.5,\n",
+ " -59.5, -58.5, -57.5, -56.5, -55.5, -54.5, -53.5, -52.5, -51.5, -50.5,\n",
+ " -49.5, -48.5, -47.5, -46.5, -45.5, -44.5, -43.5, -42.5, -41.5, -40.5,\n",
+ " -39.5, -38.5, -37.5, -36.5, -35.5, -34.5, -33.5, -32.5, -31.5, -30.5,\n",
+ " -29.5, -28.5, -27.5, -26.5, -25.5, -24.5, -23.5, -22.5, -21.5, -20.5,\n",
+ " -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, -13.5, -12.5, -11.5, -10.5,\n",
+ " -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5,\n",
+ " 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5,\n",
+ " 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5,\n",
+ " 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5,\n",
+ " 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5,\n",
+ " 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5,\n",
+ " 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5,\n",
+ " 60.5, 61.5, 62.5, 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5,\n",
+ " 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5, 77.5, 78.5, 79.5,\n",
+ " 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5]) longitude
(longitude)
float64
-179.5 -178.5 ... 178.5 179.5
standard_name : longitude long_name : longitude units : degrees_east axis : X bounds : lon_bnds array([-179.5, -178.5, -177.5, ..., 177.5, 178.5, 179.5]) time
(time)
datetime64[ns]
1998-01-01 ... 2022-12-01
standard_name : time long_name : time axis : T array(['1998-01-01T00:00:00.000000000', '1998-02-01T00:00:00.000000000',\n",
+ " '1998-03-01T00:00:00.000000000', ..., '2022-10-01T00:00:00.000000000',\n",
+ " '2022-11-01T00:00:00.000000000', '2022-12-01T00:00:00.000000000'],\n",
+ " dtype='datetime64[ns]') Data variables: (17)
sign_d13c_agw
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly flux-weighted d13C(CH4) isotopic signature for agricultural and waste units : permil vs V-PDB sigma_prop_min : 0.5 sigma_prop_max : 2.8 sigma_agg : 1.7 sigma_total_min : 1.8 sigma_total_max : 3.3 sigma_uncertainty_units : permil vs V-PDB sigma_prop_min_description : Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates sigma_prop_max_description : Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations sigma_agg_description : Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights sigma_total_min_description : Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) sigma_total_max_description : Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 53 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_bb
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly flux-weighted d13C(CH4) isotopic signature for biomass burning units : permil vs V-PDB sigma_prop_min : 0.5 sigma_prop_max : 6.0 sigma_agg : 0.1 sigma_total_min : 0.5 sigma_total_max : 6.0 sigma_uncertainty_units : permil vs V-PDB sigma_prop_min_description : Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates sigma_prop_max_description : Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations sigma_agg_description : Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights sigma_total_min_description : Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) sigma_total_max_description : Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 53 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_ffg
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly flux-weighted d13C(CH4) isotopic signature for FF units : permil vs V-PDB sigma_prop_min : 1.1 sigma_prop_max : 5.2 sigma_agg : 1.0 sigma_total_min : 1.5 sigma_total_max : 5.3 sigma_uncertainty_units : permil vs V-PDB sigma_prop_min_description : Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates sigma_prop_max_description : Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations sigma_agg_description : Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights sigma_total_min_description : Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) sigma_total_max_description : Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 53 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_nat
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly flux-weighted d13C(CH4) isotopic signature for natural non-wetland units : permil vs V-PDB sigma_prop_min : 2.0 sigma_prop_max : 5.4 sigma_agg : 0.0 sigma_total_min : 2.0 sigma_total_max : 5.4 sigma_uncertainty_units : permil vs V-PDB sigma_prop_min_description : Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates sigma_prop_max_description : Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations sigma_agg_description : Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights sigma_total_min_description : Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) sigma_total_max_description : Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 53 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_wet
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly flux-weighted d13C(CH4) isotopic signature for wetlands units : permil vs V-PDB sigma_prop_min : 0.4 sigma_prop_max : 8.2 sigma_agg : 0.0 sigma_total_min : 0.4 sigma_total_max : 8.2 sigma_uncertainty_units : permil vs V-PDB sigma_prop_min_description : Lower bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on Monte Carlo estimates sigma_prop_max_description : Upper bound of propagated uncertainty Ïprop from sub-sector isotopic composition (â°) based on literature standard deviations sigma_agg_description : Aggregation uncertainty Ïagg (â°) representing variability introduced when aggregating sub-sector signatures into sector-level values using flux weights sigma_total_min_description : Lower bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) sigma_total_max_description : Upper bound of total uncertainty Ïtotal (â°) computed as sqrt(Ïprop^2 + Ïagg^2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 53 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_sub_sector_geological
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly ÎŽ13C(CH4) isotopic signature for geological units : permil std_i_menoud : 1.6 std_i_menoud_long_name : Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022) std_i_menoud_units : permil std_i_menoud_comment : Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion std_i_lan : 1.5 std_i_lan_long_name : Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021) std_i_lan_units : permil std_i_lan_comment : Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_sub_sector_coal
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly ÎŽ13C(CH4) isotopic signature for coal units : permil std_i_menoud : 10.0 std_i_menoud_long_name : Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022) std_i_menoud_units : permil std_i_menoud_comment : Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion std_i_lan : 3.0 std_i_lan_long_name : Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021) std_i_lan_units : permil std_i_lan_comment : Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_sub_sector_termites
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly ÎŽ13C(CH4) isotopic signature for termites units : permil std_i_menoud : 7.6 std_i_menoud_long_name : Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022) std_i_menoud_units : permil std_i_menoud_comment : Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion std_i_lan : 2.8 std_i_lan_long_name : Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021) std_i_lan_units : permil std_i_lan_comment : Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_sub_sector_oceanic
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly ÎŽ13C(CH4) isotopic signature for oceanic units : permil std_i_menoud : 7.6 std_i_menoud_long_name : Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022) std_i_menoud_units : permil std_i_menoud_comment : Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion std_i_lan : 2.8 std_i_lan_long_name : Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021) std_i_lan_units : permil std_i_lan_comment : Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_sub_sector_rice
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly ÎŽ13C(CH4) isotopic signature for rice units : permil std_i_menoud : 4.5 std_i_menoud_long_name : Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022) std_i_menoud_units : permil std_i_menoud_comment : Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion std_i_lan : 1.1 std_i_lan_long_name : Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021) std_i_lan_units : permil std_i_lan_comment : Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_sub_sector_landfills
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly ÎŽ13C(CH4) isotopic signature for landfills units : permil std_i_menoud : 3.4 std_i_menoud_long_name : Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022) std_i_menoud_units : permil std_i_menoud_comment : Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion std_i_lan : 1.7 std_i_lan_long_name : Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021) std_i_lan_units : permil std_i_lan_comment : Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_sub_sector_agricultural_waste
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly ÎŽ13C(CH4) isotopic signature for agricultural waste units : permil std_i_menoud : 6.6 std_i_menoud_long_name : Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022) std_i_menoud_units : permil std_i_menoud_comment : Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion std_i_lan : 1.7 std_i_lan_long_name : Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021) std_i_lan_units : permil std_i_lan_comment : Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_sub_sector_livestock
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly ÎŽ13C(CH4) isotopic signature for livestock units : permil std_i_menoud : 5.8 std_i_menoud_long_name : Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022) std_i_menoud_units : permil std_i_menoud_comment : Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion std_i_lan : 0.2 std_i_lan_long_name : Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021) std_i_lan_units : permil std_i_lan_comment : Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_sub_sector_wetlands
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly ÎŽ13C(CH4) isotopic signature for wetlands units : permil std_i_menoud : 8.2 std_i_menoud_long_name : Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022) std_i_menoud_units : permil std_i_menoud_comment : Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion std_i_lan : 0.4 std_i_lan_long_name : Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021) std_i_lan_units : permil std_i_lan_comment : Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 16 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_sub_sector_biomassbiofuels
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly ÎŽ13C(CH4) isotopic signature for biomassbiofuels units : permil std_i_menoud : 11.2 std_i_menoud_long_name : Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022) std_i_menoud_units : permil std_i_menoud_comment : Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion std_i_lan : 5.2 std_i_lan_long_name : Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021) std_i_lan_units : permil std_i_lan_comment : Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_sub_sector_waste_water
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly ÎŽ13C(CH4) isotopic signature for waste water units : permil std_i_menoud : 3.2 std_i_menoud_long_name : Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022) std_i_menoud_units : permil std_i_menoud_comment : Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion std_i_lan : 1.7 std_i_lan_long_name : Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021) std_i_lan_units : permil std_i_lan_comment : Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sign_d13c_sub_sector_oilandgas
(time, latitude, longitude)
float64
dask.array<chunksize=(12, 90, 180), meta=np.ndarray>
long_name : Monthly ÎŽ13C(CH4) isotopic signature for oilandgas units : permil std_i_menoud : 7.7 std_i_menoud_long_name : Isotopic uncertainty Ïi for each sub-sector from Menoud et al. (2022) std_i_menoud_units : permil std_i_menoud_comment : Standard deviations of ÎŽ13C-CH4 values reported in the literature capturing spatial variability and methodological dispersion std_i_lan : 1.0 std_i_lan_long_name : Isotopic uncertainty Ïi for each sub-sector from Lan et al. (2021) std_i_lan_units : permil std_i_lan_comment : Uncertainty values derived from 10,000 Monte Carlo simulations at the grid-cell level explicitly propagating measurement and modeling errors through source attribution and mixing processes \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 148.32 MiB \n",
+ " 1.48 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (300, 180, 360) \n",
+ " (12, 90, 180) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 100 chunks in 16 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float64 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 360 \n",
+ " 180 \n",
+ " 300 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
Indexes: (3)
PandasIndex
PandasIndex(Index([-89.5, -88.5, -87.5, -86.5, -85.5, -84.5, -83.5, -82.5, -81.5, -80.5,\n",
+ " ...\n",
+ " 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5],\n",
+ " dtype='float64', name='latitude', length=180)) PandasIndex
PandasIndex(Index([-179.5, -178.5, -177.5, -176.5, -175.5, -174.5, -173.5, -172.5, -171.5,\n",
+ " -170.5,\n",
+ " ...\n",
+ " 170.5, 171.5, 172.5, 173.5, 174.5, 175.5, 176.5, 177.5, 178.5,\n",
+ " 179.5],\n",
+ " dtype='float64', name='longitude', length=360)) PandasIndex
PandasIndex(DatetimeIndex(['1998-01-01', '1998-02-01', '1998-03-01', '1998-04-01',\n",
+ " '1998-05-01', '1998-06-01', '1998-07-01', '1998-08-01',\n",
+ " '1998-09-01', '1998-10-01',\n",
+ " ...\n",
+ " '2022-03-01', '2022-04-01', '2022-05-01', '2022-06-01',\n",
+ " '2022-07-01', '2022-08-01', '2022-09-01', '2022-10-01',\n",
+ " '2022-11-01', '2022-12-01'],\n",
+ " dtype='datetime64[ns]', name='time', length=300, freq='MS')) Attributes: (9)
title : d13C(CH4) isotopic signature history : Sub-sectors aggregated into sectors (flux-weighted). NaN values filled with flux-weighted global mean. time_period : Monthly data for 1998-2022 fluxes_source_for_flux_weighted : AGRICULTURAL_WASTE, BIOFUELS, BIOMASS, COAL, LANDFILLS, LIVESTOCK, OILGASIND, RICE, WASTE_WATER: EDGARv8 (Crippa et al. 2023), GEOLOGICAL, OCEANIC, TERMITES, WETLAND: Prior fluxes provided with the Global Methane budget inversion protocol (Martinez et al. 2024) signature_source : LIVESTOCK, BIOFUELS, BIOMASS: LAN ET. AL (2021), WASTE_WATER, LANDFILLS, AGRICULTURAL_WASTE, RICE: MENOUD ET AL. (2022), COAL, OILGASIND: LAN ET. AL (2021), MENOUD ET AL. (2022), WETLAND: OH ET AL. (2022), OCEANIC: SANSONE ET AL. (2001), TERMITES: THOMPSON ET AL. (2018), GEOLOGICAL: ETIOPE ET AL. (2019) created_by : Emeline Tapin on 29 September 2025 creator_email : emeline.tapin@lsce.ipsl.fr institution : LSCE (Laboratoire des Sciences du Climat et de lâEnvironnement) conventions : CF-1.9 "
+ ],
+ "text/plain": [
+ " Size: 3GB\n",
+ "Dimensions: (latitude: 180, longitude: 360,\n",
+ " time: 300)\n",
+ "Coordinates:\n",
+ " * latitude (latitude) float64 1kB -89.5 ......\n",
+ " * longitude (longitude) float64 3kB -179.5 ....\n",
+ " * time (time) datetime64[ns] 2kB 1998-0...\n",
+ "Data variables: (12/17)\n",
+ " sign_d13c_agw (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_bb (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_ffg (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_nat (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_wet (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_sub_sector_geological (time, latitude, longitude) float64 156MB dask.array\n",
+ " ... ...\n",
+ " sign_d13c_sub_sector_agricultural_waste (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_sub_sector_livestock (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_sub_sector_wetlands (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_sub_sector_biomassbiofuels (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_sub_sector_waste_water (time, latitude, longitude) float64 156MB dask.array\n",
+ " sign_d13c_sub_sector_oilandgas (time, latitude, longitude) float64 156MB dask.array\n",
+ "Attributes:\n",
+ " title: d13C(CH4) isotopic signature\n",
+ " history: Sub-sectors aggregated into sectors (fl...\n",
+ " time_period: Monthly data for 1998-2022\n",
+ " fluxes_source_for_flux_weighted: AGRICULTURAL_WASTE, BIOFUELS, BIOMASS, ...\n",
+ " signature_source: LIVESTOCK, BIOFUELS, BIOMASS: LAN ET. A...\n",
+ " created_by: Emeline Tapin on 29 September 2025\n",
+ " creator_email: emeline.tapin@lsce.ipsl.fr\n",
+ " institution: LSCE (Laboratoire des Sciences du Clima...\n",
+ " conventions: CF-1.9"
+ ]
+ },
+ "execution_count": 242,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ds"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0520979f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# save the full self-contained collection\n",
+ "collection.normalize_and_save(\n",
+ " root_href=f'../../prr_preview/{collectionid}',\n",
+ " catalog_type=pystac.CatalogType.SELF_CONTAINED\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6114f728-d75a-4447-87a9-673bf7b219ef",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "
\n",
+ " <Collection id=d13c-ch4-signatures-smart-ch4>\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"Collection\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " id \n",
+ " \"d13c-ch4-signatures-smart-ch4\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " stac_version \n",
+ " \"1.1.0\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " description \n",
+ " \"This dataset provides monthly gridded ÎŽ13C(CHâ) isotopic signatures (â° vs V-PDB) for five methane emission sectors: Agricultural & Waste (AGW), Fossil Fuel & Geological (FFG), Biomass Burning (BB), Natural non-wetland (NAT), and Wetlands (WET), and their subsequent sub-sectors, at 1°Ă1° spatial resolution for the period 1998â2022. Each sector file contains monthly flux-weighted ÎŽ13C(CHâ) signatures computed from prior CHâ emissions used in the Global Methane Budget inversion protocol (Martinez et al., 2024), EDGARv8 (Crippa et al., 2023), and GFED4s (van Wees et al., 2022). Sub-sector ÎŽ13C-CHâ source values are derived from recent literature (Lan et al., 2021; Menoud et al., 2022; Oh et al., 2022; Thompson et al., 2018; Etiope et al., 2019; Sansone et al., 2001). The dataset also includes uncertainty components: propagated (Ïprop), aggregation (Ïagg), and total (Ïtotal), expressed in â° vs V-PDB. Data are suitable for use in atmospheric inversion and isotope modeling frameworks.\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " links [] 3 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " rel \n",
+ " \"root\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " href \n",
+ " \"/home/etapin/Téléchargements/collection.json\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"application/json\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " title \n",
+ " \"Global delta-13C(CH4) Source Signatures\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " rel \n",
+ " \"item\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " href \n",
+ " \"/home/etapin/Téléchargements/d13c-ch4-signatures-smart-ch4-zarr/d13c-ch4-signatures-smart-ch4-zarr.json\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"application/geo+json\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " rel \n",
+ " \"self\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " href \n",
+ " \"/home/etapin/Téléchargements/collection.json\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " \"application/json\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " title \n",
+ " \"Global delta-13C(CH4) Source Signatures\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " extent \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " spatial \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " bbox [] 1 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 [] 4 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " -180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " -90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 180 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " temporal \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " interval [] 1 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 [] 2 items \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \"1998-01-01T00:00:00Z\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " \"2022-12-31T23:59:59Z\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " license \n",
+ " \"CC-BY-4.0\" \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 44,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "collection"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e530c429",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# verify data is correctly aligned"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "cb635e98",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "assert np.isclose(\n",
+ " #original data\n",
+ " xr.open_dataset(ff_files[3]).sign_d13c.sel(time='2001-05-01').values,\n",
+ " # data from the zarr store\n",
+ " ds.sign_d13c_ffg.sel(time='2001-05-01').values\n",
+ ").all()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5b716252",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ds.to_zarr('../../data/d13c-ch4-signatures-smart-ch4.zarr', mode='w')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "pangeo",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.13.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/myst.yml b/myst.yml
index dbcd6e9..4aae667 100644
--- a/myst.yml
+++ b/myst.yml
@@ -19,6 +19,7 @@ project:
file: PRR/index.md
children:
- file: PRR/PRR_STAC_introduction.ipynb
+ - file: PRR/smartch4_signatures_modified.ipynb
- file: PRR/prr_zarr.ipynb
- file: PRR/Creating STAC Catalog_from_PRR_example.ipynb
- file: PRR/TCCAS_v2.ipynb